Accuracy improvement of 3D-profiling for HAR features using deep learning

卷积神经网络 深度学习 仿形(计算机编程) 平均绝对百分比误差 计算机科学 人工智能 均方误差 人工神经网络 模式识别(心理学) 试验数据 平均绝对误差 算法 机器学习 数学 统计 程序设计语言 操作系统
作者
Wei Sun,Pushe Zhao,Yasunori Goto,Takuma Yamamoto,Taku Ninomiya
标识
DOI:10.1117/12.2551458
摘要

We applied deep learning techniques to improve the accuracy of 3D-profiling for high aspect ratio (HAR) holes. As deep learning requires big data for training, we developed a method for generating a large amount of BSE line-profiles by a numerical calculation in which the aperture angle and the aberration effects of the electron beam are considered. We then utilized these numerically calculated datasets to train the deep learning model to learn the mapping from the BSE line-profiles to the target cross-sectional profiles of the HAR holes. Two different one-dimensional neural network architectures: convolutional neural network (CNN) and multi-scale convolutional neural network (MS-CNN) were trained, and different loss functions were investigated to optimize the networks. The test results show that the MS-CNN model with a defined loss function of weighted mean square error (WMSE) provided higher accuracy than the others. The mean absolute percentage error (MAPE) distribution was narrow and the typical MAPE was 4% over 2810 items of test data. This model enables us to predict the cross-section of the HAR holes with different sidewall profiles more accurately than our previously proposed exponential model. These results demonstrate the effectiveness of the learning approach for improving the accuracy of 3D-profiling of the HAR features.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
LBX应助阳光凡儿采纳,获得30
1秒前
刘畅发布了新的文献求助10
1秒前
momo完成签到 ,获得积分10
1秒前
deswin完成签到,获得积分10
2秒前
华仔应助猪猪hero采纳,获得10
2秒前
传奇3应助有魅力鬼神采纳,获得10
2秒前
Doct发布了新的文献求助30
2秒前
3秒前
3秒前
哦哦发布了新的文献求助10
3秒前
4秒前
5秒前
coconut发布了新的文献求助10
5秒前
tyf完成签到,获得积分10
5秒前
6秒前
6秒前
6秒前
圣迭戈发布了新的文献求助10
8秒前
瘦瘦完成签到,获得积分10
8秒前
李健的小迷弟应助snow采纳,获得10
8秒前
8秒前
科研小子发布了新的文献求助30
9秒前
天明完成签到,获得积分10
9秒前
wanci应助爱吃烤肉的兔子采纳,获得30
9秒前
9秒前
白白完成签到,获得积分10
9秒前
sztao发布了新的文献求助30
10秒前
木染发布了新的文献求助20
10秒前
11秒前
11秒前
猪猪hero发布了新的文献求助10
11秒前
12秒前
圆锥香蕉应助Cindy采纳,获得30
12秒前
13秒前
塵埃发布了新的文献求助10
13秒前
14秒前
12334发布了新的文献求助10
14秒前
yuM发布了新的文献求助10
15秒前
勤恳怡发布了新的文献求助10
15秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961321
求助须知:如何正确求助?哪些是违规求助? 3507666
关于积分的说明 11137254
捐赠科研通 3240099
什么是DOI,文献DOI怎么找? 1790749
邀请新用户注册赠送积分活动 872460
科研通“疑难数据库(出版商)”最低求助积分说明 803271