激光雷达
点云
摄影测量学
计算机科学
遥感
计算机视觉
人工智能
测距
点(几何)
地理
数学
几何学
电信
作者
I. Toschi,E. M. Farella,M. Welponer,Fabio Remondino
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing
日期:2021-01-09
卷期号:172: 160-170
被引量:13
标识
DOI:10.1016/j.isprsjprs.2020.12.005
摘要
A big challenge in geodata processing is the seamless and accurate integration of airborne LiDAR (Light Detection And Ranging) and photogrammetric point clouds performed by properly considering their high variations in resolution and precision. In this paper we propose a new approach to co-register airborne point clouds acquired by LiDAR sensors and photogrammetric algorithms, assuming that only dense point clouds from both mapping methods are available, without LiDAR raw data nor flight trajectories. First, semantically segmented point clouds are quality-wise evaluated by assigning sensor-specific quality features to each 3D point. Then, these quality features are aggregated in order to assign a score to each 3D point based on its quality. Finally, using a voxel-based structure, a filtering step is performed to select only the best points used for the registration refinement. We assess the performance of the proposed method on two different case studies to demonstrate its advantages compared to a traditional ICP-based approach. The code of the implemented method is available at https://github.com/3DOM-FBK/HyRe.
科研通智能强力驱动
Strongly Powered by AbleSci AI