Importance of general adiposity, visceral adiposity and vital signs in predicting blood biomarkers using machine learning

医学 生命体征 内脏脂肪 生理学 内科学 肥胖 外科 胰岛素抵抗
作者
Weihong Zhou,Yingjie Wang,Xiaoping Gu,Zhong‐Ping Feng,Kang Lee,Yuzhu Peng,Andrew Barszczyk
出处
期刊:International Journal of Clinical Practice [Wiley]
卷期号:75 (1) 被引量:5
标识
DOI:10.1111/ijcp.13664
摘要

Introduction Blood biomarkers are measured for their ability to characterise physiological and disease states. Much is known about linear relations between blood biomarker concentrations and individual vital signs or adiposity indexes (eg, BMI). Comparatively little is known about non-linear relations with these easily accessible features, particularly when they are modelled in combination and can potentially interact with one another. Methods In this study, we used advanced machine learning algorithms to create non-linear computational models for predicting blood biomarkers (cells, lipids, metabolic factors) from age, general adiposity (BMI), visceral adiposity (Waist-to-Height Ratio, a Body Shape Index) and vital signs (systolic blood pressure, diastolic blood pressure, pulse). We determined the predictive power of the overall feature set. We further calculated feature importance in our models to identify the features with the strongest relations with each blood biomarker. Data were collected in 2018 and 2019 and analysed in 2020. Results Our findings characterise previously unknown relations between these predictors and blood biomarkers; in many instances the importance of certain features or feature classes (general adiposity, visceral adiposity or vital signs) differed from their expected contribution based on simplistic linear modelling techniques. Conclusions This work could lead to the formation of new hypotheses for explaining complex biological systems and informs the creation of predictive models for potential clinical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
逍遥自在完成签到,获得积分10
刚刚
YUkiii完成签到,获得积分10
1秒前
xinchengzhu完成签到 ,获得积分10
1秒前
4秒前
英姑应助内向怀曼采纳,获得10
5秒前
云与海完成签到,获得积分10
6秒前
8秒前
隐形曼青应助TJJJJJ采纳,获得10
8秒前
helloworld完成签到,获得积分10
8秒前
tian发布了新的文献求助10
9秒前
tong童完成签到 ,获得积分10
12秒前
13秒前
大猫不吃鱼完成签到,获得积分10
13秒前
活力雁枫完成签到,获得积分10
14秒前
铱铱的胡萝卜完成签到,获得积分10
16秒前
16秒前
着急的千山完成签到 ,获得积分10
17秒前
量子力学完成签到,获得积分10
17秒前
g0123完成签到,获得积分10
18秒前
share完成签到 ,获得积分10
19秒前
liu完成签到,获得积分10
19秒前
11111112222完成签到,获得积分10
19秒前
支雨泽完成签到,获得积分10
20秒前
kimiwanano完成签到,获得积分10
20秒前
量子星尘发布了新的文献求助10
22秒前
ATTENTION完成签到,获得积分10
22秒前
22秒前
铁甲小杨完成签到,获得积分0
22秒前
ZY完成签到 ,获得积分10
23秒前
fjmelite完成签到 ,获得积分10
23秒前
Amanda完成签到 ,获得积分20
24秒前
ssassassassa完成签到 ,获得积分10
24秒前
Iso完成签到,获得积分10
24秒前
Orange应助洁净斑马采纳,获得10
24秒前
panpanliumin完成签到,获得积分0
24秒前
25秒前
橙子完成签到,获得积分20
26秒前
mmr完成签到 ,获得积分10
28秒前
不想太多完成签到,获得积分10
29秒前
张一完成签到,获得积分10
30秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015737
求助须知:如何正确求助?哪些是违规求助? 3555681
关于积分的说明 11318391
捐赠科研通 3288879
什么是DOI,文献DOI怎么找? 1812301
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812027