Importance of general adiposity, visceral adiposity and vital signs in predicting blood biomarkers using machine learning

医学 生命体征 内脏脂肪 生理学 内科学 肥胖 外科 胰岛素抵抗
作者
Weihong Zhou,Yingjie Wang,Xiaoping Gu,Zhong‐Ping Feng,Kang Lee,Yuzhu Peng,Andrew Barszczyk
出处
期刊:International Journal of Clinical Practice [Wiley]
卷期号:75 (1) 被引量:5
标识
DOI:10.1111/ijcp.13664
摘要

Introduction Blood biomarkers are measured for their ability to characterise physiological and disease states. Much is known about linear relations between blood biomarker concentrations and individual vital signs or adiposity indexes (eg, BMI). Comparatively little is known about non-linear relations with these easily accessible features, particularly when they are modelled in combination and can potentially interact with one another. Methods In this study, we used advanced machine learning algorithms to create non-linear computational models for predicting blood biomarkers (cells, lipids, metabolic factors) from age, general adiposity (BMI), visceral adiposity (Waist-to-Height Ratio, a Body Shape Index) and vital signs (systolic blood pressure, diastolic blood pressure, pulse). We determined the predictive power of the overall feature set. We further calculated feature importance in our models to identify the features with the strongest relations with each blood biomarker. Data were collected in 2018 and 2019 and analysed in 2020. Results Our findings characterise previously unknown relations between these predictors and blood biomarkers; in many instances the importance of certain features or feature classes (general adiposity, visceral adiposity or vital signs) differed from their expected contribution based on simplistic linear modelling techniques. Conclusions This work could lead to the formation of new hypotheses for explaining complex biological systems and informs the creation of predictive models for potential clinical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
pragmatic发布了新的文献求助10
1秒前
1秒前
量子星尘发布了新的文献求助10
2秒前
Stella完成签到,获得积分10
3秒前
红色流星完成签到,获得积分10
3秒前
waoller1发布了新的文献求助10
5秒前
zzsl发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
pragmatic完成签到,获得积分10
6秒前
九九我应助克偃统统采纳,获得10
6秒前
Orange应助wyz采纳,获得10
7秒前
7秒前
8秒前
木子应助QSJ采纳,获得10
8秒前
nvger发布了新的文献求助10
9秒前
zhz完成签到,获得积分10
10秒前
健忘的灵凡完成签到,获得积分10
10秒前
研友_VZG7GZ应助waoller1采纳,获得10
10秒前
隐形曼青应助waoller1采纳,获得10
10秒前
秘密发布了新的文献求助10
11秒前
11秒前
wy.he应助iamnottingting采纳,获得20
11秒前
11秒前
yyy完成签到,获得积分10
11秒前
12秒前
读读读关注了科研通微信公众号
12秒前
慕青应助aming采纳,获得10
13秒前
13秒前
幸运咖发布了新的文献求助30
13秒前
朝朝暮夕完成签到 ,获得积分10
13秒前
OK完成签到,获得积分10
14秒前
14秒前
violet完成签到,获得积分10
15秒前
15秒前
淡然安雁发布了新的文献求助10
15秒前
anna1992完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Alloy Phase Diagrams 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5420235
求助须知:如何正确求助?哪些是违规求助? 4535334
关于积分的说明 14149695
捐赠科研通 4452346
什么是DOI,文献DOI怎么找? 2442137
邀请新用户注册赠送积分活动 1433646
关于科研通互助平台的介绍 1410931