Importance of general adiposity, visceral adiposity and vital signs in predicting blood biomarkers using machine learning

医学 生命体征 内脏脂肪 生理学 内科学 肥胖 外科 胰岛素抵抗
作者
Weihong Zhou,Yingjie Wang,Xiaoping Gu,Zhong‐Ping Feng,Kang Lee,Yuzhu Peng,Andrew Barszczyk
出处
期刊:International Journal of Clinical Practice [Wiley]
卷期号:75 (1) 被引量:5
标识
DOI:10.1111/ijcp.13664
摘要

Introduction Blood biomarkers are measured for their ability to characterise physiological and disease states. Much is known about linear relations between blood biomarker concentrations and individual vital signs or adiposity indexes (eg, BMI). Comparatively little is known about non-linear relations with these easily accessible features, particularly when they are modelled in combination and can potentially interact with one another. Methods In this study, we used advanced machine learning algorithms to create non-linear computational models for predicting blood biomarkers (cells, lipids, metabolic factors) from age, general adiposity (BMI), visceral adiposity (Waist-to-Height Ratio, a Body Shape Index) and vital signs (systolic blood pressure, diastolic blood pressure, pulse). We determined the predictive power of the overall feature set. We further calculated feature importance in our models to identify the features with the strongest relations with each blood biomarker. Data were collected in 2018 and 2019 and analysed in 2020. Results Our findings characterise previously unknown relations between these predictors and blood biomarkers; in many instances the importance of certain features or feature classes (general adiposity, visceral adiposity or vital signs) differed from their expected contribution based on simplistic linear modelling techniques. Conclusions This work could lead to the formation of new hypotheses for explaining complex biological systems and informs the creation of predictive models for potential clinical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助yutian928采纳,获得10
1秒前
爆米花应助彭泽林采纳,获得10
1秒前
ffw1发布了新的文献求助10
2秒前
2秒前
呆萌的正豪完成签到,获得积分10
2秒前
2秒前
2秒前
阿鸢发布了新的文献求助20
2秒前
无昵称完成签到 ,获得积分10
2秒前
科研通AI6应助我爱乒乓球采纳,获得10
3秒前
煎饼果子发布了新的文献求助10
3秒前
Jasper应助奋斗的年纪采纳,获得10
3秒前
4秒前
LL完成签到 ,获得积分10
4秒前
Bi8bo发布了新的文献求助10
4秒前
薯条完成签到,获得积分10
4秒前
12发布了新的文献求助10
5秒前
大个应助幸运的蜥蜴采纳,获得10
5秒前
5秒前
wzl发布了新的文献求助10
6秒前
Windycityguy发布了新的文献求助10
6秒前
搜集达人应助猫的淡淡采纳,获得30
6秒前
7秒前
科研通AI6应助一包辣条采纳,获得10
7秒前
7秒前
wb完成签到 ,获得积分10
7秒前
8秒前
走走发布了新的文献求助10
9秒前
9秒前
10秒前
10秒前
10秒前
葉落葉飄完成签到,获得积分10
10秒前
动听元彤完成签到,获得积分10
10秒前
默默的聪健完成签到,获得积分10
11秒前
11秒前
11秒前
ZZH发布了新的文献求助10
11秒前
12秒前
yelaikuhun74发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603484
求助须知:如何正确求助?哪些是违规求助? 4012177
关于积分的说明 12422449
捐赠科研通 3692673
什么是DOI,文献DOI怎么找? 2035749
邀请新用户注册赠送积分活动 1068916
科研通“疑难数据库(出版商)”最低求助积分说明 953403