Importance of general adiposity, visceral adiposity and vital signs in predicting blood biomarkers using machine learning

医学 生命体征 内脏脂肪 生理学 内科学 肥胖 外科 胰岛素抵抗
作者
Weihong Zhou,Yingjie Wang,Xiaoping Gu,Zhong‐Ping Feng,Kang Lee,Yuzhu Peng,Andrew Barszczyk
出处
期刊:International Journal of Clinical Practice [Wiley]
卷期号:75 (1) 被引量:5
标识
DOI:10.1111/ijcp.13664
摘要

Introduction Blood biomarkers are measured for their ability to characterise physiological and disease states. Much is known about linear relations between blood biomarker concentrations and individual vital signs or adiposity indexes (eg, BMI). Comparatively little is known about non-linear relations with these easily accessible features, particularly when they are modelled in combination and can potentially interact with one another. Methods In this study, we used advanced machine learning algorithms to create non-linear computational models for predicting blood biomarkers (cells, lipids, metabolic factors) from age, general adiposity (BMI), visceral adiposity (Waist-to-Height Ratio, a Body Shape Index) and vital signs (systolic blood pressure, diastolic blood pressure, pulse). We determined the predictive power of the overall feature set. We further calculated feature importance in our models to identify the features with the strongest relations with each blood biomarker. Data were collected in 2018 and 2019 and analysed in 2020. Results Our findings characterise previously unknown relations between these predictors and blood biomarkers; in many instances the importance of certain features or feature classes (general adiposity, visceral adiposity or vital signs) differed from their expected contribution based on simplistic linear modelling techniques. Conclusions This work could lead to the formation of new hypotheses for explaining complex biological systems and informs the creation of predictive models for potential clinical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟花应助snowpie采纳,获得10
1秒前
曦月发布了新的文献求助10
1秒前
Hello应助李子木采纳,获得10
1秒前
熟悉的ZY先生应助lla采纳,获得10
2秒前
高贵向日葵完成签到,获得积分10
2秒前
3秒前
九香虫发布了新的文献求助10
9秒前
HJZ完成签到,获得积分10
10秒前
Owen应助树池采纳,获得10
10秒前
10秒前
充电宝应助wangkeke采纳,获得10
13秒前
14秒前
15秒前
15秒前
恶魔小艾发布了新的文献求助10
15秒前
18秒前
snowpie发布了新的文献求助10
19秒前
车车完成签到,获得积分10
20秒前
23秒前
小毛竹发布了新的文献求助10
23秒前
长风完成签到,获得积分10
23秒前
24秒前
Jackay发布了新的文献求助30
24秒前
25秒前
一一应助糖糖猫采纳,获得10
26秒前
柯南发布了新的文献求助10
27秒前
斯文败类应助ly72975采纳,获得10
27秒前
领导范儿应助南风不竞采纳,获得10
27秒前
Orange应助yyy采纳,获得10
28秒前
29秒前
完美世界应助科研通管家采纳,获得10
30秒前
打打应助科研通管家采纳,获得10
30秒前
大个应助科研通管家采纳,获得10
30秒前
fifteen应助科研通管家采纳,获得10
30秒前
djbj2022发布了新的文献求助10
30秒前
田様应助科研通管家采纳,获得10
30秒前
852应助科研通管家采纳,获得10
30秒前
思源应助科研通管家采纳,获得10
30秒前
daifei应助科研通管家采纳,获得10
30秒前
小马甲应助科研通管家采纳,获得10
30秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Saponins and sapogenins. IX. Saponins and sapogenins of Luffa aegyptica mill seeds (black variety) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3260269
求助须知:如何正确求助?哪些是违规求助? 2901491
关于积分的说明 8315823
捐赠科研通 2571055
什么是DOI,文献DOI怎么找? 1396823
科研通“疑难数据库(出版商)”最低求助积分说明 653584
邀请新用户注册赠送积分活动 631997