Influence of chain interaction and ordered structures in polymer dispersed liquid crystalline membranes on thermal conductivity

材料科学 差示扫描量热法 中胚层 聚合物 热重分析 化学工程 极限抗拉强度 扫描电子显微镜 聚乙烯醇 聚酰亚胺 液晶 弹性体 复合材料 热导率 液晶 高分子化学 化学 物理 工程类 热力学 生物化学 光电子学 图层(电子)
作者
Ying Li,Pan Pan,Chao Liu,Wenying Zhou,Chenggong Li,Changdan Gong,Qiao Lijie,Liang Zhang,Hui Song
出处
期刊:Journal of Polymer Engineering [De Gruyter]
卷期号:40 (7): 573-581 被引量:2
标识
DOI:10.1515/polyeng-2020-0004
摘要

Abstract Polymer dispersed liquid crystalline (PDLC) membrane with intrinsic thermal conductivity was prepared by dispersing liquid crystalline polysiloxane containing crosslinked structure (liquid crystalline polysiloxane elastomer (LCPE)) into polyvinyl alcohol (PVA). Chemical structures were characterized by Fourier transform infrared (FT-IR) and 1 H-NMR, and microscopic structures were analyzed by polarizing optical microscope (POM), scanning electron microscope (SEM) and X-ray diffraction (XRD). The thermal conductivity of PDLC membrane was characterized by hot disk thermal constants analyzer, and the tensile properties were measured by tensile testing machine. Thermal properties were characterized by differential scanning calorimeter (DSC) and thermal gravimetric analyzer (TGA). The results show that LCPE was dispersed in PVA uniformly, and the mesogenic monomer of LCPE formed microscopic ordered structures in PDLC membrane. Meanwhile, hydrogen-bond interaction was formed between LCPE and PVA chain. Both microscopic-ordered structure and the hydrogen-bond interaction improved the phonon transmission path, and the thermal conductivity of PDLC membrane was up to 0.74 W/m⋅K, which was 6 times higher than that of pure PVA film. PDLC membrane possessed proper tensile strength and elongation at break, respectively 5.18 MPa and 338%. As a result, PDLC membrane can be used as thermal conductive membrane in electronic packaging and other related fields.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
foster完成签到,获得积分20
刚刚
3秒前
koujiahui发布了新的文献求助10
3秒前
shadow完成签到,获得积分10
4秒前
缘稚完成签到,获得积分10
5秒前
6秒前
6秒前
宋虹完成签到,获得积分10
7秒前
jpc完成签到,获得积分10
7秒前
8秒前
8秒前
9秒前
9秒前
9秒前
Loading发布了新的文献求助10
10秒前
研友_VZG7GZ应助韩哈哈采纳,获得10
10秒前
11秒前
木木发布了新的文献求助30
13秒前
Jing发布了新的文献求助10
13秒前
14秒前
16秒前
17秒前
17秒前
木木完成签到,获得积分10
20秒前
sad发布了新的文献求助10
21秒前
发型犀利啊应助Jing采纳,获得10
22秒前
羞涩的丹云完成签到,获得积分10
22秒前
一休完成签到,获得积分10
23秒前
不配.应助Limanman采纳,获得20
23秒前
27秒前
27秒前
28秒前
JW应助Charlie采纳,获得10
28秒前
28秒前
科研通AI2S应助重要无极采纳,获得10
29秒前
29秒前
复杂的平卉完成签到,获得积分10
30秒前
31秒前
一休发布了新的文献求助10
31秒前
白潇潇发布了新的文献求助10
32秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3145276
求助须知:如何正确求助?哪些是违规求助? 2796719
关于积分的说明 7820904
捐赠科研通 2452997
什么是DOI,文献DOI怎么找? 1305336
科研通“疑难数据库(出版商)”最低求助积分说明 627483
版权声明 601464