Potential feature exploration and model development based on 18F-FDG PET/CT images for differentiating benign and malignant lung lesions

医学 无线电技术 核医学 正电子发射断层摄影术 阿卡克信息准则 接收机工作特性 特征选择 曼惠特尼U检验 断层摄影术 标准摄取值 特征(语言学) 放射科 人工智能 模式识别(心理学) 机器学习 计算机科学 内科学 哲学 语言学
作者
Ruiping Zhang,Lei Zhu,Zhengting Cai,Wei Jiang,Jian Li,Chengwen Yang,Chunxu Yu,Bo Jiang,Wei Wang,Wengui Xu,Xiangfei Chai,Xiaodong Zhang,Yong Tang
出处
期刊:European Journal of Radiology [Elsevier]
卷期号:121: 108735-108735 被引量:26
标识
DOI:10.1016/j.ejrad.2019.108735
摘要

The study is to explore potential features and develop classification models for distinguishing benign and malignant lung lesions based on CT-radiomics features and PET metabolic parameters extracted from PET/CT images.A retrospective study was conducted in baseline 18 F-flurodeoxyglucose positron emission tomography/ computed tomography (18 F-FDG PET/CT) images of 135 patients. The dataset was utilized for feature extraction of CT-radiomics features and PET metabolic parameters based on volume of interest, then went through feature selection and model development with strategy of five-fold cross-validation. Specifically, model development used support vector machine, PET metabolic parameters selection used Akaike's information criterion, and CT-radiomics were reduced by the least absolute shrinkage and selection operator method then forward selection approach. The diagnostic performances of CT-radiomics, PET metabolic parameters and combination of both were illustrated by receiver operating characteristic (ROC) curves, and compared by Delong test. Five groups of selected PET metabolic parameters and CT-radiomics were counted, and potential features were found and analyzed with Mann-Whitney U test.The CT-radiomics, PET metabolic parameters, and combination of both among five subsets showed mean area under the curve (AUC) of 0.820 ± 0.053, 0.874 ± 0.081, and 0.887 ± 0.046, respectively. No significant differences in ROC among models were observed through pairwise comparison in each fold (P-value from 0.09 to 0.81, Delong test). The potential features were found to be SurfaceVolumeRatio and SUVpeak (P < 0.001 of both, U test).The classification models developed by CT-radiomics features and PET metabolic parameters based on PET/CT images have substantial diagnostic capacity on lung lesions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助Xue采纳,获得10
刚刚
yisa发布了新的文献求助10
刚刚
2秒前
Mzb完成签到,获得积分10
2秒前
2秒前
大头完成签到 ,获得积分10
2秒前
史一豆完成签到 ,获得积分10
2秒前
2秒前
Yu发布了新的文献求助10
4秒前
dwls完成签到,获得积分10
4秒前
lina发布了新的文献求助10
5秒前
所所应助广旭采纳,获得10
6秒前
小小灯笼发布了新的文献求助10
6秒前
石头完成签到,获得积分10
7秒前
英俊的筝发布了新的文献求助10
7秒前
一一一一完成签到,获得积分10
7秒前
LLL发布了新的文献求助10
7秒前
archer01发布了新的文献求助30
8秒前
9秒前
10秒前
10秒前
江江完成签到,获得积分10
10秒前
10秒前
10秒前
能干的谷蕊完成签到 ,获得积分10
11秒前
小乌龟完成签到 ,获得积分10
12秒前
13秒前
www发布了新的文献求助10
14秒前
lilingyi完成签到,获得积分10
15秒前
15秒前
16秒前
16秒前
LLL完成签到,获得积分10
17秒前
Nina发布了新的文献求助10
18秒前
完美世界应助机灵隶采纳,获得10
19秒前
20秒前
lisn发布了新的文献求助30
20秒前
Xue发布了新的文献求助10
21秒前
想人陪的新瑶完成签到,获得积分20
23秒前
cs完成签到,获得积分10
23秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134819
求助须知:如何正确求助?哪些是违规求助? 2785712
关于积分的说明 7773883
捐赠科研通 2441585
什么是DOI,文献DOI怎么找? 1298006
科研通“疑难数据库(出版商)”最低求助积分说明 625075
版权声明 600825