Potential feature exploration and model development based on 18F-FDG PET/CT images for differentiating benign and malignant lung lesions

医学 无线电技术 核医学 正电子发射断层摄影术 阿卡克信息准则 接收机工作特性 特征选择 曼惠特尼U检验 断层摄影术 标准摄取值 特征(语言学) 放射科 人工智能 模式识别(心理学) 机器学习 计算机科学 内科学 语言学 哲学
作者
Ruiping Zhang,Lei Zhu,Zhengting Cai,Wei Jiang,Jian Li,Chengwen Yang,Chunxu Yu,Bo Jiang,Wei Wang,Wengui Xu,Xiangfei Chai,Xiaodong Zhang,Yong Tang
出处
期刊:European Journal of Radiology [Elsevier BV]
卷期号:121: 108735-108735 被引量:26
标识
DOI:10.1016/j.ejrad.2019.108735
摘要

The study is to explore potential features and develop classification models for distinguishing benign and malignant lung lesions based on CT-radiomics features and PET metabolic parameters extracted from PET/CT images.A retrospective study was conducted in baseline 18 F-flurodeoxyglucose positron emission tomography/ computed tomography (18 F-FDG PET/CT) images of 135 patients. The dataset was utilized for feature extraction of CT-radiomics features and PET metabolic parameters based on volume of interest, then went through feature selection and model development with strategy of five-fold cross-validation. Specifically, model development used support vector machine, PET metabolic parameters selection used Akaike's information criterion, and CT-radiomics were reduced by the least absolute shrinkage and selection operator method then forward selection approach. The diagnostic performances of CT-radiomics, PET metabolic parameters and combination of both were illustrated by receiver operating characteristic (ROC) curves, and compared by Delong test. Five groups of selected PET metabolic parameters and CT-radiomics were counted, and potential features were found and analyzed with Mann-Whitney U test.The CT-radiomics, PET metabolic parameters, and combination of both among five subsets showed mean area under the curve (AUC) of 0.820 ± 0.053, 0.874 ± 0.081, and 0.887 ± 0.046, respectively. No significant differences in ROC among models were observed through pairwise comparison in each fold (P-value from 0.09 to 0.81, Delong test). The potential features were found to be SurfaceVolumeRatio and SUVpeak (P < 0.001 of both, U test).The classification models developed by CT-radiomics features and PET metabolic parameters based on PET/CT images have substantial diagnostic capacity on lung lesions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
zzh完成签到 ,获得积分10
3秒前
北国雪未消完成签到 ,获得积分10
3秒前
YifanWang应助一个小胖子采纳,获得10
8秒前
卡戎529完成签到 ,获得积分10
10秒前
不展完成签到 ,获得积分10
11秒前
MrChew完成签到 ,获得积分10
13秒前
li完成签到 ,获得积分10
13秒前
liaomr完成签到 ,获得积分10
15秒前
xff完成签到 ,获得积分20
15秒前
27秒前
量子星尘发布了新的文献求助10
29秒前
愛研究完成签到,获得积分10
29秒前
smz完成签到 ,获得积分10
29秒前
30秒前
小绵羊发布了新的文献求助10
31秒前
Jeffery426发布了新的文献求助10
32秒前
猪仔5号完成签到 ,获得积分10
34秒前
小绵羊完成签到,获得积分20
39秒前
lhn完成签到 ,获得积分10
40秒前
41秒前
桐桐应助小绵羊采纳,获得10
41秒前
nianshu完成签到 ,获得积分10
43秒前
飞龙在天完成签到,获得积分0
45秒前
49秒前
MM完成签到 ,获得积分10
55秒前
59秒前
59秒前
逗小妹完成签到,获得积分10
1分钟前
1分钟前
1分钟前
逗小妹发布了新的文献求助10
1分钟前
可爱的函函应助瘦瘦采纳,获得10
1分钟前
深情安青应助fantexi113采纳,获得10
1分钟前
梦_筱彩完成签到 ,获得积分10
1分钟前
开拖拉机的医学僧完成签到 ,获得积分10
1分钟前
swordshine完成签到,获得积分10
1分钟前
怕孤独的访云完成签到 ,获得积分10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3957101
求助须知:如何正确求助?哪些是违规求助? 3503148
关于积分的说明 11111393
捐赠科研通 3234212
什么是DOI,文献DOI怎么找? 1787802
邀请新用户注册赠送积分活动 870776
科研通“疑难数据库(出版商)”最低求助积分说明 802292