Label‐Free Quantitative Proteomics Identifies Novel Biomarkers for Distinguishing Tuberculosis Pleural Effusion from Malignant Pleural Effusion

蛋白质组学 定量蛋白质组学 医学 逻辑回归 病理 胸腔积液 内科学 生物 生物化学 基因
作者
Liping Pan,Xia Zhang,Jia Huang,Mailing Huang,Fei Liu,Jinghui Wang,Boping Du,Ran Wei,Qi Sun,Aiying Xing,Qi Li,Zongde Zhang
出处
期刊:Proteomics Clinical Applications [Wiley]
卷期号:14 (1) 被引量:5
标识
DOI:10.1002/prca.201900001
摘要

Purpose To identify potential protein biomarkers for distinguishing tuberculosis plural effusion (TBPE) from malignant plural effusion (MPE). Experimental design Five independent samples from each group (TBPE and MPE) are enrolled for label‐free quantitative proteomics analyses. The differentially expressed proteins are validated by western blot and ELISA. Logistic regression analysis is used to obtain the optimal diagnostic model. Results In total, 14 proteins with significant difference are identified between TBPE and MPE. Seven differentially expressed proteins are validated using western blot, and the expression patterns of these seven proteins are similar with those in proteomics analysis. Statistically significant differences in four proteins (AGP1, ORM2, C9, and SERPING1) are noted between TBPE and MPE in the training set ( n = 230). Logistic regression analysis shows the combination of AGP1–ORM2–C9 presents a sensitivity of 73.0% (92/126) and specificity of 89.4% (93/104) in discriminating TBPE from MPE. Additional validation is performed to evaluate the diagnostic model in an independent blind testing set ( n = 80), and yielded a sensitivity of 74.4% (32/43) and specificity of 91.9% (34/37) in discriminating TBPE from MPE. Conclusion The study uncovers the proteomic profiles of TBPE and MPE, and provides new potential diagnostic biomarkers for distinguishing TBPE from MPE.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
清爽忆山发布了新的文献求助10
1秒前
睡觉晒太阳完成签到,获得积分10
1秒前
andy完成签到,获得积分10
1秒前
1秒前
Itachi12138完成签到,获得积分10
1秒前
CipherSage应助蓝莓松饼采纳,获得10
1秒前
1秒前
团团完成签到,获得积分10
1秒前
追寻的易烟完成签到,获得积分10
1秒前
snow完成签到,获得积分10
2秒前
2秒前
2秒前
1111完成签到,获得积分20
3秒前
爆米花应助笑点低蜜蜂采纳,获得10
3秒前
橘子味汽水完成签到 ,获得积分10
3秒前
Victor陈完成签到,获得积分10
3秒前
3秒前
seed85完成签到,获得积分10
3秒前
最初完成签到,获得积分20
4秒前
Hello应助Chem is try采纳,获得10
4秒前
hhh发布了新的文献求助10
4秒前
4秒前
5秒前
落寞白曼完成签到,获得积分10
6秒前
6秒前
海鸥海鸥发布了新的文献求助10
7秒前
别让我误会完成签到 ,获得积分10
8秒前
8秒前
KK发布了新的文献求助30
8秒前
娃娃完成签到 ,获得积分20
8秒前
科研通AI5应助结实的冰真采纳,获得30
8秒前
冷静的小熊猫完成签到,获得积分10
9秒前
Donnie完成签到,获得积分10
9秒前
若尘完成签到,获得积分10
10秒前
椰子完成签到 ,获得积分10
10秒前
10秒前
细腻涵菱完成签到,获得积分10
11秒前
吕耀炜完成签到,获得积分10
11秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672