Enhanced O2− and HO via in situ generating H2O2 at activated graphite felt cathode for efficient photocatalytic fuel cell

阴极 降级(电信) 法拉第效率 石墨 化学工程 光催化 微生物燃料电池 活性炭 原位 功率密度 催化作用 污染物 化学 材料科学 羟基自由基 电流密度 燃料电池 比能量 电化学 高级氧化法 电极 废水
作者
Linsen Li,Jing Bai,Shuai Chen,Yan Zhang,Jinhua Li,Tingsheng Zhou,Jiachen Wang,Xiaohong Guan,Baoxue Zhou
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:399: 125839-125839 被引量:39
标识
DOI:10.1016/j.cej.2020.125839
摘要

The use of a photocatalytic fuel cell (PFC) in wastewater treatment is an intensively researched topic because the device integrates organic pollutant degradation and chemical energy recovery. Herein, we proposed a strategy to enhance PFC performance by increasing the concentrations of hydroxyl radical (HO) and superoxide radical (O2−) produced from H2O2 generated in situ using an activated graphite felt (GF) cathode. This cathode was prepared by H2SO4 treatment to introduce oxygen-containing functional groups on its surface that would serve as surface-active sites and facilitate the two-electron pathway of H2O2 production. Remarkably, the peak current density of the activated GF cathode (−1.25 mA/cm2) was more than thrice that of the original GF cathode (−0.40 mA/cm2), and its Faradaic efficiency significantly improved from 20.01% to 74.09%. The PFC equipped with the activated GF cathode harvested 2.69 times the maximum power density (JVmax) and 5.15 times the degradation rate of the traditional Pt black-PFC system. This was because the O2− and HO concentrations, respectively, were 2.87 (23.98 × 10−5 M) and 2.48 times (13.00 × 10−4 M) as high as those in the Pt black-PFC system. These results were attributed to the high concentration of H2O2 generated in situ at the activated GF cathode, which was 25.13 times (0.402 mM) as high as that generated at the Pt black cathode. Thus, the proposed PFC system demonstrates the feasibility of improving organic pollutant degradation and energy recovery by enhancing H2O2 production.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
拾光&完成签到 ,获得积分10
3秒前
李佰科完成签到,获得积分10
4秒前
5秒前
顾矜应助一口啵啵采纳,获得10
6秒前
摘星012完成签到 ,获得积分10
6秒前
123发布了新的文献求助20
7秒前
张大宝完成签到 ,获得积分10
8秒前
烟花应助pingyuxuan采纳,获得10
9秒前
9秒前
记忆里的阳光完成签到,获得积分10
11秒前
11秒前
12秒前
Orange应助啦啦采纳,获得10
13秒前
Bystander完成签到 ,获得积分10
13秒前
13秒前
14秒前
III完成签到,获得积分10
15秒前
哦豁拐咯发布了新的文献求助10
15秒前
15秒前
16秒前
陈欣羽发布了新的文献求助10
16秒前
小二郎应助欢喜的非笑采纳,获得10
17秒前
17秒前
18秒前
ZZ发布了新的文献求助10
18秒前
21秒前
21秒前
21秒前
Chouvikin完成签到,获得积分10
22秒前
bobo完成签到 ,获得积分10
22秒前
清风朗月完成签到,获得积分10
23秒前
23秒前
wbx发布了新的文献求助10
24秒前
一口啵啵发布了新的文献求助10
24秒前
joy完成签到,获得积分10
24秒前
25秒前
春山发布了新的文献求助10
25秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5288622
求助须知:如何正确求助?哪些是违规求助? 4440454
关于积分的说明 13824620
捐赠科研通 4322732
什么是DOI,文献DOI怎么找? 2372708
邀请新用户注册赠送积分活动 1368140
关于科研通互助平台的介绍 1332034