Enhanced O2− and HO via in situ generating H2O2 at activated graphite felt cathode for efficient photocatalytic fuel cell

阴极 降级(电信) 法拉第效率 石墨 化学工程 光催化 活性炭 催化作用 污染物 化学 材料科学 光化学 电化学 电极 有机化学 电气工程 吸附 工程类 物理化学
作者
Linsen Li,Jing Bai,Shuai Chen,Yan Zhang,Jinhua Li,Tingsheng Zhou,Jiachen Wang,Xiaohong Guan,Baoxue Zhou
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:399: 125839-125839 被引量:25
标识
DOI:10.1016/j.cej.2020.125839
摘要

The use of a photocatalytic fuel cell (PFC) in wastewater treatment is an intensively researched topic because the device integrates organic pollutant degradation and chemical energy recovery. Herein, we proposed a strategy to enhance PFC performance by increasing the concentrations of hydroxyl radical (HO) and superoxide radical (O2−) produced from H2O2 generated in situ using an activated graphite felt (GF) cathode. This cathode was prepared by H2SO4 treatment to introduce oxygen-containing functional groups on its surface that would serve as surface-active sites and facilitate the two-electron pathway of H2O2 production. Remarkably, the peak current density of the activated GF cathode (−1.25 mA/cm2) was more than thrice that of the original GF cathode (−0.40 mA/cm2), and its Faradaic efficiency significantly improved from 20.01% to 74.09%. The PFC equipped with the activated GF cathode harvested 2.69 times the maximum power density (JVmax) and 5.15 times the degradation rate of the traditional Pt black-PFC system. This was because the O2− and HO concentrations, respectively, were 2.87 (23.98 × 10−5 M) and 2.48 times (13.00 × 10−4 M) as high as those in the Pt black-PFC system. These results were attributed to the high concentration of H2O2 generated in situ at the activated GF cathode, which was 25.13 times (0.402 mM) as high as that generated at the Pt black cathode. Thus, the proposed PFC system demonstrates the feasibility of improving organic pollutant degradation and energy recovery by enhancing H2O2 production.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爱静静应助老肥采纳,获得30
1秒前
1秒前
2秒前
2秒前
动听书雁发布了新的文献求助10
3秒前
英姑应助沙xiaohan采纳,获得10
3秒前
棉花糖完成签到,获得积分10
3秒前
yatuitui完成签到,获得积分10
3秒前
warmhelium发布了新的文献求助10
4秒前
坚定尔白完成签到,获得积分10
4秒前
猫好好发布了新的文献求助10
5秒前
大力信封完成签到,获得积分10
5秒前
昵称发布了新的文献求助10
5秒前
5秒前
5秒前
周雪峰完成签到,获得积分10
6秒前
zain完成签到 ,获得积分10
6秒前
汉堡包应助roy_chiang采纳,获得10
8秒前
科研通AI5应助Nyxia采纳,获得10
8秒前
大葱发布了新的文献求助10
9秒前
情怀应助warmhelium采纳,获得10
9秒前
真水无香123应助饱满懿轩采纳,获得10
9秒前
10秒前
orixero应助科研通管家采纳,获得10
10秒前
小二郎应助科研通管家采纳,获得10
10秒前
VDC应助科研通管家采纳,获得30
10秒前
bkagyin应助科研通管家采纳,获得10
10秒前
脑洞疼应助科研通管家采纳,获得10
10秒前
orixero应助科研通管家采纳,获得10
10秒前
JamesPei应助科研通管家采纳,获得10
10秒前
苏卿应助科研通管家采纳,获得10
10秒前
10秒前
pluto应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
小蘑菇应助科研通管家采纳,获得10
10秒前
CipherSage应助科研通管家采纳,获得10
11秒前
Hello应助科研通管家采纳,获得10
11秒前
共享精神应助科研通管家采纳,获得10
11秒前
CodeCraft应助动听书雁采纳,获得10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 710
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3564116
求助须知:如何正确求助?哪些是违规求助? 3137325
关于积分的说明 9421827
捐赠科研通 2837701
什么是DOI,文献DOI怎么找? 1559976
邀请新用户注册赠送积分活动 729224
科研通“疑难数据库(出版商)”最低求助积分说明 717246