High-dimensional mass cytometry analysis of immune cells in emphysematous lung tissue

医学 质量细胞仪 病理 流式细胞术 支气管肺泡灌洗 细胞 免疫系统
作者
P. Padmini S.J. Khedoe,Na Li,Li Jia,Nannan Guo,Pieter S. Hiemstra,Frits Koning,Jan Stolk
出处
期刊:European Respiratory Journal 卷期号:56
标识
DOI:10.1183/13993003.congress-2020.4474
摘要

The lung niche provides important signals for proper functioning and interactions between epithelial and immune cells, and is suggested to be altered in emphysema in chronic obstructive pulmonary disease (COPD). Here, we determined whether high-dimensional mass cytometry (cytometry by time-of-flight; CyTOF) analysis is feasible to identify immune cell populations in the lung and can be used to delineate immune functions in human ‘healthy’ and diseased lungs. Therefore, we performed a first CyTOF analysis to compare immune cells derived from non-emphysematous and severe emphysematous lung tissue. We isolated single cells from fresh non-emphysematous lungs (n=5), emphysematous lungs (n=15) and paired blood samples and stored them at -80°C. We applied a CyTOF panel comprising 39 antibodies to obtain a global overview of the immune cell composition in the lung. Finally, we analyzed data with Hierarchical Stochastic Neighbor Embedding (HSNE) and dual t-SNE to identify tissue-specific cell clusters. CyTOF analysis revealed distinct immune cell populations in human lung tissue, which clustered differently from blood-derived cells. Importantly, tissue myeloid cells from emphysematous lungs clustered differently from cells derived from non-emphysematous controls. We showed that CyTOF analysis of lung tissue is feasible, and reveals distinct features of myeloid populations in emphysematous tissue. We are now further expanding the panel to detect lung-specific markers. Furthermore, we will apply imaging mass cytometry to allow the simultaneous detection of up to 40 markers with spatial information in a single lung tissue section, allowing examination of altered cellular interactions in emphysema.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
晶晶完成签到,获得积分10
2秒前
2秒前
见青山发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
婉婉发布了新的文献求助10
7秒前
佰斯特威应助海姆达尔采纳,获得10
7秒前
佰斯特威应助海姆达尔采纳,获得10
7秒前
一介书生发布了新的文献求助10
7秒前
咳咳咳糖浆完成签到,获得积分20
7秒前
赘婿应助谦让之云采纳,获得10
8秒前
鱼芋屿完成签到 ,获得积分10
8秒前
coco完成签到,获得积分10
8秒前
隐形盼海发布了新的文献求助10
9秒前
星辰大海应助无为采纳,获得10
9秒前
vivi完成签到,获得积分10
10秒前
lrl发布了新的文献求助10
10秒前
万能图书馆应助独特翠丝采纳,获得10
11秒前
mydays关注了科研通微信公众号
11秒前
爱笑的大白菜完成签到 ,获得积分20
11秒前
Ava应助乐观的颦采纳,获得10
12秒前
12秒前
12秒前
13秒前
Xltox完成签到,获得积分10
14秒前
14秒前
科研通AI5应助海姆达尔采纳,获得10
14秒前
科研通AI5应助海姆达尔采纳,获得10
14秒前
HMONEY应助海姆达尔采纳,获得10
14秒前
科研通AI5应助海姆达尔采纳,获得10
14秒前
香蕉觅云应助海姆达尔采纳,获得10
14秒前
汉堡包应助海姆达尔采纳,获得10
14秒前
Xiaoxiao应助海姆达尔采纳,获得10
15秒前
科研通AI5应助海姆达尔采纳,获得10
15秒前
科研通AI5应助海姆达尔采纳,获得20
15秒前
HMONEY应助海姆达尔采纳,获得10
15秒前
如此完成签到,获得积分10
17秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3740956
求助须知:如何正确求助?哪些是违规求助? 3283797
关于积分的说明 10036810
捐赠科研通 3000526
什么是DOI,文献DOI怎么找? 1646584
邀请新用户注册赠送积分活动 783787
科研通“疑难数据库(出版商)”最低求助积分说明 750427