Real-Time Defect Detection Scheme Based on Deep Learning for Laser Welding System

焊接 激光束焊接 卷积神经网络 计算机科学 过程(计算) 激光器 传感器融合 材料科学 人工智能 机械工程 工程类 光学 操作系统 物理
作者
Peng Peng,Kui Fan,Xueqiang Fan,Hongping Zhou,Zhongyi Guo
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:23 (15): 17301-17309 被引量:5
标识
DOI:10.1109/jsen.2023.3277732
摘要

Laser welding, as an important material processing technology, has been widely used in various fields of industry. In most industrial welding production and processing, high precision is required for welding parameters and fixed work pieces. However, in the process of laser welding, serious heat transfer effect will bring unpredictable welding deviations, and even a small deviation will lead to serious welding defects, which will affect the quality of the welded products. Traditional nondestructive testing methods have been widely used, but they have been proved to have some limitations. Existing laser welding defect detection schemes are mainly focused on the detection of postweld defects, which requires a large amount of data, and the real-time detection cannot be guaranteed. In this article, we propose a data acquisition system for collecting changes in physical characteristics during laser welding with the aids of multiple sensors. Based on the data originating from sensors' system, an efficient laser welding defect detection model has been designed and investigated based on the multiscale convolutional neural network (MSCNN), bidirectional long short-term memory (BiLSTM), and attention mechanism (AM). The final proposed MSCNN-BiLSTM-AM fusion detection model can achieve 99.38% detection accuracy, which make the laser welding system more efficient and more suitable.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xxxx完成签到 ,获得积分10
刚刚
Atopos完成签到 ,获得积分10
1秒前
1秒前
兰子君11完成签到 ,获得积分10
1秒前
华仔应助一原君采纳,获得10
2秒前
wangyuan发布了新的文献求助10
2秒前
2秒前
挺好的发货完成签到,获得积分10
3秒前
3秒前
Goat完成签到,获得积分10
5秒前
hl应助zumii采纳,获得10
7秒前
兰子君11关注了科研通微信公众号
7秒前
9秒前
夏先生完成签到 ,获得积分10
9秒前
9秒前
李健应助yoozii采纳,获得10
10秒前
10秒前
10秒前
蓝桉发布了新的文献求助10
10秒前
12秒前
清璃发布了新的文献求助20
13秒前
酷酷天晴发布了新的文献求助10
14秒前
15秒前
啦啦啦发布了新的文献求助10
15秒前
小马甲应助十三月的过客采纳,获得10
17秒前
18秒前
18秒前
19秒前
孟123完成签到,获得积分10
19秒前
荒天帝完成签到 ,获得积分10
19秒前
韩丙宇发布了新的文献求助10
20秒前
23秒前
24秒前
24秒前
24秒前
朴实薯片发布了新的文献求助10
25秒前
25秒前
27秒前
27秒前
demoliu发布了新的文献求助10
28秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
Die Gottesanbeterin: Mantis religiosa: 656 500
Communist propaganda: a fact book, 1957-1958 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3170264
求助须知:如何正确求助?哪些是违规求助? 2821489
关于积分的说明 7934302
捐赠科研通 2481692
什么是DOI,文献DOI怎么找? 1322076
科研通“疑难数据库(出版商)”最低求助积分说明 633463
版权声明 602595