Ferroelectric materials for neuroinspired computing applications

计算机科学 材料科学 铁电性 光电子学 电介质
作者
Dong Wang,Shenglan Hao,Brahim Dkhil,Bobo Tian,Chun‐Gang Duan
出处
期刊:Fundamental research [Elsevier BV]
卷期号:4 (5): 1272-1291 被引量:10
标识
DOI:10.1016/j.fmre.2023.04.013
摘要

In recent years, the emergence of numerous applications of artificial intelligence (AI) has sparked a new technological revolution. These applications include facial recognition, autonomous driving, intelligent robotics, and image restoration. However, the data processing and storage procedures in the conventional von Neumann architecture are discrete, which leads to the "memory wall" problem. As a result, such architecture is incompatible with AI requirements for efficient and sustainable processing. Exploring new computing architectures and material bases is therefore imperative. Inspired by neurobiological systems, in-memory and in-sensor computing techniques provide a new means of overcoming the limitations inherent in the von Neumann architecture. The basis of neural morphological computation is a crossbar array of high-density, high-efficiency non-volatile memory devices. Among the numerous candidate memory devices, ferroelectric memory devices with non-volatile polarization states, low power consumption and strong endurance are expected to be ideal candidates for neuromorphic computing. Further research on the complementary metal–oxide–semiconductor (CMOS) compatibility for these devices is underway and has yielded favorable results. Herein, we first introduce the development of ferroelectric materials as well as their mechanisms of polarization reversal and detail the applications of ferroelectric synaptic devices in artificial neural networks. Subsequently, we introduce the latest developments in ferroelectrics-based in-memory and in-sensor computing. Finally, we review recent works on hafnium-based ferroelectric memory devices with CMOS process compatibility and give a perspective for future developments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
177希希发布了新的文献求助10
1秒前
阿力完成签到 ,获得积分10
2秒前
为医消得人憔悴完成签到 ,获得积分10
2秒前
shunyi完成签到,获得积分10
3秒前
3秒前
万能图书馆应助shunyi采纳,获得10
6秒前
kkk完成签到,获得积分10
7秒前
大秦帝国完成签到,获得积分10
7秒前
8秒前
8秒前
177希希完成签到,获得积分10
9秒前
万能图书馆应助张谋采纳,获得10
10秒前
帅哥完成签到,获得积分10
11秒前
高兴致远完成签到,获得积分10
11秒前
明杰发布了新的文献求助10
12秒前
12秒前
14秒前
帅哥发布了新的文献求助10
14秒前
15秒前
15秒前
17秒前
18秒前
露西亚发布了新的文献求助10
19秒前
21秒前
21秒前
21秒前
李健应助帅哥采纳,获得10
21秒前
刘晚柠完成签到 ,获得积分10
21秒前
030213lzy给030213lzy的求助进行了留言
22秒前
量子星尘发布了新的文献求助50
22秒前
852应助我的人生太多雨季采纳,获得10
24秒前
Hello应助科研小锄头采纳,获得10
24秒前
科目三应助萧一采纳,获得10
27秒前
27秒前
27秒前
替月亮关灯完成签到,获得积分10
28秒前
28秒前
jagger发布了新的文献求助10
30秒前
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
2026国自然单细胞多组学大红书申报宝典 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4916187
求助须知:如何正确求助?哪些是违规求助? 4189726
关于积分的说明 13012119
捐赠科研通 3959063
什么是DOI,文献DOI怎么找? 2170518
邀请新用户注册赠送积分活动 1188698
关于科研通互助平台的介绍 1096671