Ferroelectric materials for neuroinspired computing applications

计算机科学 材料科学 铁电性 光电子学 电介质
作者
Dong Wang,Shenglan Hao,Brahim Dkhil,Bobo Tian,Chun‐Gang Duan
出处
期刊:Fundamental research [Elsevier]
卷期号:4 (5): 1272-1291 被引量:23
标识
DOI:10.1016/j.fmre.2023.04.013
摘要

In recent years, the emergence of numerous applications of artificial intelligence (AI) has sparked a new technological revolution. These applications include facial recognition, autonomous driving, intelligent robotics, and image restoration. However, the data processing and storage procedures in the conventional von Neumann architecture are discrete, which leads to the "memory wall" problem. As a result, such architecture is incompatible with AI requirements for efficient and sustainable processing. Exploring new computing architectures and material bases is therefore imperative. Inspired by neurobiological systems, in-memory and in-sensor computing techniques provide a new means of overcoming the limitations inherent in the von Neumann architecture. The basis of neural morphological computation is a crossbar array of high-density, high-efficiency non-volatile memory devices. Among the numerous candidate memory devices, ferroelectric memory devices with non-volatile polarization states, low power consumption and strong endurance are expected to be ideal candidates for neuromorphic computing. Further research on the complementary metal-oxide-semiconductor (CMOS) compatibility for these devices is underway and has yielded favorable results. Herein, we first introduce the development of ferroelectric materials as well as their mechanisms of polarization reversal and detail the applications of ferroelectric synaptic devices in artificial neural networks. Subsequently, we introduce the latest developments in ferroelectrics-based in-memory and in-sensor computing. Finally, we review recent works on hafnium-based ferroelectric memory devices with CMOS process compatibility and give a perspective for future developments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
852应助xingyong采纳,获得10
1秒前
wanci应助虚幻的白凝采纳,获得10
2秒前
大林发布了新的文献求助30
2秒前
清新发布了新的文献求助10
2秒前
阳光的凡雁完成签到,获得积分10
2秒前
陈陈陈完成签到,获得积分20
2秒前
wanci应助活力尔岚采纳,获得10
3秒前
不做Aspirin完成签到 ,获得积分10
3秒前
3秒前
4秒前
4秒前
5秒前
5秒前
asd发布了新的文献求助10
5秒前
5秒前
ggg完成签到 ,获得积分10
6秒前
sfs完成签到,获得积分10
6秒前
6秒前
科研通AI6应助lq采纳,获得10
6秒前
6秒前
6秒前
Foch完成签到,获得积分10
7秒前
Rui_Rui发布了新的文献求助10
7秒前
Ava应助yy采纳,获得10
7秒前
李健应助狂野从雪采纳,获得10
8秒前
terryok完成签到,获得积分10
8秒前
Attendre完成签到 ,获得积分10
8秒前
懒123发布了新的文献求助10
8秒前
无花果应助michael采纳,获得10
8秒前
高高亦竹发布了新的文献求助10
9秒前
大方虎发布了新的文献求助10
9秒前
11发布了新的文献求助10
10秒前
honger发布了新的文献求助10
10秒前
10秒前
10秒前
Aimee完成签到,获得积分10
10秒前
走走发布了新的文献求助10
11秒前
LHP完成签到 ,获得积分10
11秒前
11秒前
JJW完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5396591
求助须知:如何正确求助?哪些是违规求助? 4516960
关于积分的说明 14061977
捐赠科研通 4428852
什么是DOI,文献DOI怎么找? 2432178
邀请新用户注册赠送积分活动 1424542
关于科研通互助平台的介绍 1403644