Ferroelectric materials for neuroinspired computing applications

计算机科学 材料科学 铁电性 光电子学 电介质
作者
Dong Wang,Shenglan Hao,Brahim Dkhil,Bobo Tian,Chun‐Gang Duan
出处
期刊:Fundamental research [Elsevier]
卷期号:4 (5): 1272-1291 被引量:23
标识
DOI:10.1016/j.fmre.2023.04.013
摘要

In recent years, the emergence of numerous applications of artificial intelligence (AI) has sparked a new technological revolution. These applications include facial recognition, autonomous driving, intelligent robotics, and image restoration. However, the data processing and storage procedures in the conventional von Neumann architecture are discrete, which leads to the "memory wall" problem. As a result, such architecture is incompatible with AI requirements for efficient and sustainable processing. Exploring new computing architectures and material bases is therefore imperative. Inspired by neurobiological systems, in-memory and in-sensor computing techniques provide a new means of overcoming the limitations inherent in the von Neumann architecture. The basis of neural morphological computation is a crossbar array of high-density, high-efficiency non-volatile memory devices. Among the numerous candidate memory devices, ferroelectric memory devices with non-volatile polarization states, low power consumption and strong endurance are expected to be ideal candidates for neuromorphic computing. Further research on the complementary metal-oxide-semiconductor (CMOS) compatibility for these devices is underway and has yielded favorable results. Herein, we first introduce the development of ferroelectric materials as well as their mechanisms of polarization reversal and detail the applications of ferroelectric synaptic devices in artificial neural networks. Subsequently, we introduce the latest developments in ferroelectrics-based in-memory and in-sensor computing. Finally, we review recent works on hafnium-based ferroelectric memory devices with CMOS process compatibility and give a perspective for future developments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐乐应助辛勤芷天采纳,获得10
刚刚
贾福运发布了新的文献求助10
刚刚
Guai乖完成签到,获得积分10
刚刚
星城发布了新的文献求助10
1秒前
1秒前
阿尼拉姆完成签到,获得积分10
2秒前
畅学天下完成签到,获得积分10
3秒前
a502410600完成签到,获得积分10
3秒前
4秒前
liujianxin完成签到,获得积分20
4秒前
oyly完成签到 ,获得积分10
4秒前
4秒前
欣慰煎蛋完成签到,获得积分10
4秒前
kero完成签到,获得积分10
5秒前
哦哈哈完成签到 ,获得积分10
6秒前
7秒前
liiy完成签到,获得积分10
8秒前
木玄机完成签到,获得积分10
8秒前
陶醉抽屉发布了新的文献求助10
8秒前
贾福运完成签到,获得积分10
8秒前
DXDXJX完成签到 ,获得积分10
9秒前
852应助美满的初之采纳,获得10
9秒前
221156发布了新的文献求助10
10秒前
adamchris发布了新的文献求助30
11秒前
11秒前
安康完成签到,获得积分10
12秒前
星城完成签到,获得积分20
13秒前
科研牛马完成签到,获得积分10
13秒前
风中冰香应助满意巨人采纳,获得10
14秒前
16秒前
积极的睫毛完成签到,获得积分10
18秒前
鹅1完成签到,获得积分10
18秒前
kkk完成签到,获得积分10
19秒前
海边的卡夫卡完成签到,获得积分10
21秒前
Huanghong完成签到,获得积分10
21秒前
21秒前
鹅1发布了新的文献求助10
22秒前
林林完成签到,获得积分10
23秒前
zzz完成签到,获得积分10
24秒前
lqz完成签到,获得积分10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5294519
求助须知:如何正确求助?哪些是违规求助? 4444365
关于积分的说明 13832957
捐赠科研通 4328428
什么是DOI,文献DOI怎么找? 2376121
邀请新用户注册赠送积分活动 1371451
关于科研通互助平台的介绍 1336662