Ferroelectric materials for neuroinspired computing applications

计算机科学 材料科学 铁电性 光电子学 电介质
作者
Dong Wang,Shenglan Hao,Brahim Dkhil,Bobo Tian,Chun‐Gang Duan
出处
期刊:Fundamental research [Elsevier BV]
卷期号:4 (5): 1272-1291 被引量:10
标识
DOI:10.1016/j.fmre.2023.04.013
摘要

In recent years, the emergence of numerous applications of artificial intelligence (AI) has sparked a new technological revolution. These applications include facial recognition, autonomous driving, intelligent robotics, and image restoration. However, the data processing and storage procedures in the conventional von Neumann architecture are discrete, which leads to the "memory wall" problem. As a result, such architecture is incompatible with AI requirements for efficient and sustainable processing. Exploring new computing architectures and material bases is therefore imperative. Inspired by neurobiological systems, in-memory and in-sensor computing techniques provide a new means of overcoming the limitations inherent in the von Neumann architecture. The basis of neural morphological computation is a crossbar array of high-density, high-efficiency non-volatile memory devices. Among the numerous candidate memory devices, ferroelectric memory devices with non-volatile polarization states, low power consumption and strong endurance are expected to be ideal candidates for neuromorphic computing. Further research on the complementary metal–oxide–semiconductor (CMOS) compatibility for these devices is underway and has yielded favorable results. Herein, we first introduce the development of ferroelectric materials as well as their mechanisms of polarization reversal and detail the applications of ferroelectric synaptic devices in artificial neural networks. Subsequently, we introduce the latest developments in ferroelectrics-based in-memory and in-sensor computing. Finally, we review recent works on hafnium-based ferroelectric memory devices with CMOS process compatibility and give a perspective for future developments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
温柔寒梅完成签到 ,获得积分10
2秒前
Evooolet发布了新的文献求助10
2秒前
自由的松发布了新的文献求助10
3秒前
Tessa发布了新的文献求助10
4秒前
4秒前
所所应助猪猪hero采纳,获得10
5秒前
anasy发布了新的文献求助10
7秒前
7秒前
8秒前
充电宝应助Youatpome采纳,获得10
9秒前
天狗屯月完成签到,获得积分10
9秒前
Tessa完成签到,获得积分10
9秒前
墩墩应助在途中采纳,获得10
9秒前
12秒前
12秒前
科研通AI5应助佘楽采纳,获得10
13秒前
YYZZ发布了新的文献求助20
14秒前
14秒前
14秒前
15秒前
合适尔槐发布了新的文献求助20
15秒前
da_line应助渊思采纳,获得10
15秒前
科研通AI5应助U9A采纳,获得10
15秒前
Nuckylin发布了新的文献求助10
16秒前
17秒前
17秒前
阿Q发布了新的文献求助10
18秒前
文献查找发布了新的文献求助10
19秒前
共享精神应助安静的瑾瑜采纳,获得10
23秒前
博修发布了新的文献求助10
25秒前
丘比特应助健忘捕采纳,获得10
27秒前
MaxWong发布了新的文献求助10
27秒前
zxh656691发布了新的文献求助10
27秒前
27秒前
28秒前
123完成签到,获得积分20
28秒前
30秒前
清脆南蕾发布了新的文献求助10
33秒前
33秒前
liu123发布了新的文献求助10
35秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967722
求助须知:如何正确求助?哪些是违规求助? 3512889
关于积分的说明 11165380
捐赠科研通 3247919
什么是DOI,文献DOI怎么找? 1794067
邀请新用户注册赠送积分活动 874836
科研通“疑难数据库(出版商)”最低求助积分说明 804578