Microstructural image based convolutional neural networks for efficient prediction of full-field stress maps in short fiber polymer composites

卷积神经网络 环氧树脂 材料科学 模数 复合材料 有限元法 纤维 压力(语言学) 复合数 人工神经网络 应力场 计算机科学 结构工程 人工智能 工程类 哲学 语言学
作者
Sristi Gupta,T. Mukhopadhyay,Vinod Kushvaha
出处
期刊:Defence Technology [Elsevier]
卷期号:24: 58-82 被引量:7
标识
DOI:10.1016/j.dt.2022.09.008
摘要

The increased demand for superior materials has highlighted the need of investigating the mechanical properties of composites to achieve enhanced constitutive relationships. Fiber-reinforced polymer composites have emerged as an integral part of materials development with tailored mechanical properties. However, the complexity and heterogeneity of such composites make it considerably more challenging to have precise quantification of properties and attain an optimal design of structures through experimental and computational approaches. In order to avoid the complex, cumbersome, and labor-intensive experimental and numerical modeling approaches, a machine learning (ML) model is proposed here such that it takes the microstructural image as input with a different range of Young's modulus of carbon fibers and neat epoxy, and obtains output as visualization of the stress component S11 (principal stress in the x-direction). For obtaining the training data of the ML model, a short carbon fiber-filled specimen under quasi-static tension is modeled based on 2D Representative Area Element (RAE) using finite element analysis. The composite is inclusive of short carbon fibers with an aspect ratio of 7.5 that are infilled in the epoxy systems at various random orientations and positions generated using the Simple Sequential Inhibition (SSI) process. The study reveals that the pix2pix deep learning Convolutional Neural Network (CNN) model is robust enough to predict the stress fields in the composite for a given arrangement of short fibers filled in epoxy over the specified range of Young's modulus with high accuracy. The CNN model achieves a correlation score of about 0.999 and L2 norm of less than 0.005 for a majority of the samples in the design spectrum, indicating excellent prediction capability. In this paper, we have focused on the stage-wise chronological development of the CNN model with optimized performance for predicting the full-field stress maps of the fiber-reinforced composite specimens. The development of such a robust and efficient algorithm would significantly reduce the amount of time and cost required to study and design new composite materials through the elimination of numerical inputs by direct microstructural images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
乔乐完成签到,获得积分10
刚刚
刚刚
1秒前
2秒前
3秒前
固的曼发布了新的文献求助20
4秒前
4秒前
Orange应助ZJ采纳,获得10
6秒前
6秒前
6秒前
GGGGBong完成签到,获得积分10
6秒前
杰青发布了新的文献求助10
7秒前
lyz666发布了新的文献求助10
7秒前
宜醉宜游宜睡应助OHDJSZMS采纳,获得10
9秒前
guo完成签到,获得积分10
10秒前
小王发布了新的文献求助10
10秒前
10秒前
科目三应助刘璇1采纳,获得10
13秒前
李爱国应助杰青采纳,获得10
14秒前
14秒前
罗疯子发布了新的文献求助10
15秒前
18秒前
19秒前
洛洛完成签到,获得积分10
20秒前
李健应助霸气的金鱼采纳,获得10
20秒前
梦会故乡完成签到,获得积分10
21秒前
21秒前
木木杨完成签到,获得积分10
22秒前
22秒前
23秒前
研友_nxV4m8完成签到,获得积分10
23秒前
YC发布了新的文献求助20
23秒前
XIEMIN发布了新的文献求助10
24秒前
24秒前
迷你的晓槐关注了科研通微信公众号
25秒前
songguodong完成签到,获得积分10
26秒前
糊涂的保温杯完成签到,获得积分10
26秒前
27秒前
27秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3459163
求助须知:如何正确求助?哪些是违规求助? 3053710
关于积分的说明 9037991
捐赠科研通 2742977
什么是DOI,文献DOI怎么找? 1504606
科研通“疑难数据库(出版商)”最低求助积分说明 695334
邀请新用户注册赠送积分活动 694663