Filtering properties of Hodgkin–Huxley neuron on different time-scale signals

霍奇金-赫胥黎模型 神经元 比例(比率) 数学 生物系统 统计物理学 生物神经元模型 物理 人工智能 计算机科学 神经科学 生物 量子力学
作者
Dong Yu,Guowei Wang,Tianyu Li,Qianming Ding,Ya Jia
出处
期刊:Communications in Nonlinear Science and Numerical Simulation [Elsevier]
卷期号:117: 106894-106894 被引量:25
标识
DOI:10.1016/j.cnsns.2022.106894
摘要

Neurons can be excited and inhibited by filtered signals. The filtering properties of neural networks have a huge impact on memory, learning, and disease. In this paper, the frequency selection of Hodgkin–Huxley (HH) neuron in response to band-pass filtered signals is investigated. It is found that the neuronal filtering property depends on the locking relationship between the band-pass filtered signal’s center frequency and the neuronal natural frequency. The natural firing frequency is a combination of the fundamental component and the various level harmonic components. The response of the neuron to the band-pass filtered signal is related to the amplitude of the harmonic components. Neuron responds better to the low-frequency filtered signals than the high-frequency filtered signals because of the reduction in the harmonic component amplitude. The filtering ability of the neuron can be modulated by the excitation level, and is stronger around the excitation threshold. Our results might provide novel insights into the filtering properties of neural networks and guide the construction of artificial neural networks. • Neurons show a non-linear dependence on the frequency band of the filtered signal. • The response of the neuron to the filtered signal depends on the frequency locking relationship between the neuronal natural firing frequency and the signals’ frequency band. • The response of the neuron to the filtered signal becomes weaker as the harmonic amplitude decreases. • Excitable neurons are excited by the filtered signal, and spontaneous firing neurons are inhibited.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kiki0808完成签到 ,获得积分10
刚刚
Lio完成签到,获得积分10
1秒前
1秒前
阿龙发布了新的文献求助10
1秒前
1秒前
Dandanhuang发布了新的文献求助10
2秒前
lili发布了新的文献求助10
3秒前
杨子怡完成签到 ,获得积分10
4秒前
为十完成签到,获得积分10
5秒前
Leon Lai完成签到,获得积分0
5秒前
Aries完成签到,获得积分10
6秒前
6秒前
6秒前
金碧河发布了新的文献求助10
7秒前
冷艳馒头完成签到,获得积分10
7秒前
科研丁真完成签到,获得积分10
9秒前
LEE123完成签到,获得积分10
9秒前
默默善愁完成签到,获得积分10
10秒前
10秒前
10秒前
王梦秋完成签到 ,获得积分10
11秒前
11秒前
小二郎应助Dandanhuang采纳,获得10
12秒前
12秒前
12秒前
仙女发布了新的文献求助10
12秒前
asang完成签到,获得积分10
12秒前
刘国建郭菱香完成签到 ,获得积分10
12秒前
反复发作完成签到,获得积分10
13秒前
echo完成签到,获得积分10
14秒前
YFL完成签到,获得积分20
14秒前
lichunrong完成签到,获得积分10
14秒前
unicorn完成签到,获得积分10
15秒前
裴秀智发布了新的文献求助10
16秒前
16秒前
16秒前
16秒前
16秒前
默默善愁发布了新的文献求助30
17秒前
bkagyin应助史淼荷采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5295297
求助须知:如何正确求助?哪些是违规求助? 4444855
关于积分的说明 13834820
捐赠科研通 4329178
什么是DOI,文献DOI怎么找? 2376556
邀请新用户注册赠送积分活动 1371823
关于科研通互助平台的介绍 1337080