共价键
硅
氢键
聚合
丙烯酸
材料科学
阳极
化学工程
电极
超分子化学
高分子化学
复合材料
化学
分子
聚合物
有机化学
光电子学
物理化学
单体
工程类
作者
Xin Wan,Cong Kang,Tiansheng Mu,Jiaming Zhu,Pengjian Zuo,Chunyu Du,Geping Yin
出处
期刊:ACS energy letters
[American Chemical Society]
日期:2022-09-27
卷期号:7 (10): 3572-3580
被引量:64
标识
DOI:10.1021/acsenergylett.2c02030
摘要
Developing "ideal" binders to achieve ultrahigh area-capacity stable silicon (Si) anodes remains a significant challenge. Herein, a self-healing binder with a multilevel buffered structure is designed to alleviate the structural damage and performance degradation caused by extreme volume deformation of Si. In this multilevel configuration, employing the coexistence strategy of dynamic supramolecular interactions and rigid covalent bonds, the dopamine-grafted poly(acrylic acid) (PAA-DA) possesses abundant hydrogen bonds and strong viscoelasticity, which facilitates the dynamic reconstruction of the entire network. Moreover, the hydroxyl groups on the polyethylene glycol (PVA) form a strong covalent bond network with the carboxyl groups in PAA-DA under thermal polymerization conditions to ensure the integrity of the electrode structure. At 4 A g–1, the resulting Si electrode retains 1974.1 mAh g–1 after 500 cycles. This binder design strategy with dynamic repair and stable network structure gives specific inspiration for developing high-energy-density batteries.
科研通智能强力驱动
Strongly Powered by AbleSci AI