Dynamic On-Demand Crowdshipping Using Constrained and Heuristics-Embedded Double Dueling Deep Q-Network

启发式 计算机科学 强化学习 启发式 数学优化 动作(物理) 运筹学 人工智能 工程类 数学 量子力学 操作系统 物理
作者
Nahid Parvez Farazi,Bo Zou,Theja Tulabandhula
出处
期刊:Transportation Research Part E-logistics and Transportation Review [Elsevier]
卷期号:166: 102890-102890 被引量:8
标识
DOI:10.1016/j.tre.2022.102890
摘要

This paper proposes a deep reinforcement learning (DRL)-based approach to the dynamic on-demand crowdshipping problem in which requests constantly arrive in a crowdshipping system for pickup and delivery within limited time windows. The request pickup and delivery are performed by crowdsourcees, who are ordinary people dynamically arriving in and leaving the crowdshipping system, and dedicating their limited and heterogeneous available time and carrying capacity to crowdshipping. In return, crowdsourcees get paid by the delivery service provider who periodically assigns requests to crowdsourcees in the course of a day to minimize shipping cost. We adopt heuristics-embedded Deep Q-Network (DQN) algorithms that incorporate double and dueling structures, to train DRL agents. The idea of heuristics-embedded training is conceived by designing an elaborate action space where several refined local search heuristics are embedded to direct the specific action to take once an action type is chosen by DRL, with the purpose of preserving tractability of DRL training. To tackle the hard constraints pertaining to crowdsourcee and request time windows, we propose and integrate three new strategies (feasibility enforced local search, multiple schedules with different penalties, and exponential penalty) as part of the DRL training and testing. Extensive numerical analysis is conducted and shows that Double Dueling DQN with the exponential penalty strategy demonstrates the best performance. We compare the performance of the agent trained by Double Dueling DQN with conventional heuristic approaches, and find that the agent yields total shipping costs that are on average 24–37% lower than the conventional heuristic approaches. For problem instances that can be solved to optimality, the optimality gap using the trained agent is also quite small, in the range of 3–7%. Moreover, the trained agent is robust to stationary/non-stationary demand patterns. Lastly, our approach is further compared with a recent study that uses heuristics-embedded DQN, and shows superior performance (total shipping costs on average 19% lower) as a result of several differences.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一叶应助阿航采纳,获得20
1秒前
2秒前
光天画戟的把完成签到 ,获得积分10
8秒前
z0z0c0完成签到,获得积分10
8秒前
ableyy发布了新的文献求助10
8秒前
10秒前
阿哇完成签到,获得积分10
10秒前
10秒前
高高芷天发布了新的文献求助10
11秒前
yy完成签到,获得积分10
11秒前
meilongyong完成签到,获得积分10
12秒前
12秒前
CodeCraft应助科研通管家采纳,获得10
12秒前
搜集达人应助科研通管家采纳,获得10
13秒前
wanci应助科研通管家采纳,获得10
13秒前
NAOKI应助科研通管家采纳,获得10
13秒前
斯文败类应助科研通管家采纳,获得10
13秒前
13秒前
yz完成签到,获得积分10
14秒前
16秒前
兴奋觅海完成签到,获得积分10
16秒前
一拳一个小欧阳完成签到 ,获得积分10
16秒前
17秒前
一方发布了新的文献求助30
17秒前
孙栋完成签到,获得积分10
17秒前
心灵美的修洁完成签到 ,获得积分10
17秒前
脑洞疼应助chali48采纳,获得10
17秒前
Ava应助leo采纳,获得10
17秒前
丽百川发布了新的文献求助10
19秒前
21秒前
22秒前
莫莫发布了新的文献求助10
22秒前
22秒前
22秒前
moexce发布了新的文献求助10
22秒前
maplesirup完成签到,获得积分10
24秒前
24秒前
萤火虫应助沉静方盒采纳,获得10
25秒前
25秒前
居居应助宇宙第一甜妹采纳,获得10
26秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
中国氢能技术发展路线图研究 500
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3168334
求助须知:如何正确求助?哪些是违规求助? 2819660
关于积分的说明 7927409
捐赠科研通 2479535
什么是DOI,文献DOI怎么找? 1320994
科研通“疑难数据库(出版商)”最低求助积分说明 632925
版权声明 602460