Dynamic On-Demand Crowdshipping Using Constrained and Heuristics-Embedded Double Dueling Deep Q-Network

启发式 计算机科学 强化学习 启发式 数学优化 动作(物理) 运筹学 人工智能 工程类 数学 量子力学 操作系统 物理
作者
Nahid Parvez Farazi,Bo Zou,Theja Tulabandhula
出处
期刊:Transportation Research Part E-logistics and Transportation Review [Elsevier]
卷期号:166: 102890-102890 被引量:8
标识
DOI:10.1016/j.tre.2022.102890
摘要

This paper proposes a deep reinforcement learning (DRL)-based approach to the dynamic on-demand crowdshipping problem in which requests constantly arrive in a crowdshipping system for pickup and delivery within limited time windows. The request pickup and delivery are performed by crowdsourcees, who are ordinary people dynamically arriving in and leaving the crowdshipping system, and dedicating their limited and heterogeneous available time and carrying capacity to crowdshipping. In return, crowdsourcees get paid by the delivery service provider who periodically assigns requests to crowdsourcees in the course of a day to minimize shipping cost. We adopt heuristics-embedded Deep Q-Network (DQN) algorithms that incorporate double and dueling structures, to train DRL agents. The idea of heuristics-embedded training is conceived by designing an elaborate action space where several refined local search heuristics are embedded to direct the specific action to take once an action type is chosen by DRL, with the purpose of preserving tractability of DRL training. To tackle the hard constraints pertaining to crowdsourcee and request time windows, we propose and integrate three new strategies (feasibility enforced local search, multiple schedules with different penalties, and exponential penalty) as part of the DRL training and testing. Extensive numerical analysis is conducted and shows that Double Dueling DQN with the exponential penalty strategy demonstrates the best performance. We compare the performance of the agent trained by Double Dueling DQN with conventional heuristic approaches, and find that the agent yields total shipping costs that are on average 24–37% lower than the conventional heuristic approaches. For problem instances that can be solved to optimality, the optimality gap using the trained agent is also quite small, in the range of 3–7%. Moreover, the trained agent is robust to stationary/non-stationary demand patterns. Lastly, our approach is further compared with a recent study that uses heuristics-embedded DQN, and shows superior performance (total shipping costs on average 19% lower) as a result of several differences.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ybb完成签到,获得积分10
1秒前
1秒前
快乐的伟诚完成签到,获得积分10
3秒前
搜集达人应助大胆夜绿采纳,获得10
3秒前
3秒前
4秒前
辛勤的无血完成签到,获得积分10
7秒前
8秒前
rookie完成签到,获得积分10
8秒前
8秒前
ni完成签到,获得积分10
9秒前
step_stone给step_stone的求助进行了留言
10秒前
10秒前
荒野星辰发布了新的文献求助10
11秒前
敏感的芷完成签到,获得积分20
11秒前
13秒前
13秒前
14秒前
luoshi应助沐风采纳,获得20
14秒前
安南完成签到,获得积分10
14秒前
香蕉冬云完成签到 ,获得积分10
15秒前
自信安荷发布了新的文献求助200
15秒前
鱼雷发布了新的文献求助10
16秒前
兔子发布了新的文献求助10
16秒前
16秒前
田様应助coffee采纳,获得10
17秒前
17秒前
专注鼠标完成签到,获得积分10
17秒前
LingYing完成签到 ,获得积分10
18秒前
cheche完成签到,获得积分10
19秒前
liushun完成签到,获得积分10
19秒前
caoyy发布了新的文献求助10
19秒前
zzt发布了新的文献求助10
20秒前
22秒前
22秒前
章家炜发布了新的文献求助10
23秒前
脑洞疼应助xfxx采纳,获得10
23秒前
wanci应助茶博士采纳,获得10
23秒前
所所应助YYT采纳,获得10
24秒前
匿名网友完成签到 ,获得积分10
24秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824