静态随机存取存储器
电阻随机存取存储器
计算机科学
晶体管
内容寻址存储器
CMOS芯片
非易失性存储器
非易失性随机存取存储器
背景(考古学)
三元运算
材料科学
计算机硬件
半导体存储器
光电子学
电气工程
计算机存储器
内存刷新
电压
人工神经网络
工程类
生物
机器学习
古生物学
程序设计语言
作者
Gihwan Hyun,Batyrbek Alimkhanuly,Donguk Seo,Minwoo Lee,Junseong Bae,Seunghyun Lee,Shubham Patil,Young-Cheol Hwang,Arman Kadyrov,Hyungyu Yoo,Anupom Devnath,Yoonmyung Lee,Seunghyun Lee
出处
期刊:Small
[Wiley]
日期:2024-04-12
标识
DOI:10.1002/smll.202310943
摘要
Abstract The development of data‐intensive computing methods imposes a significant load on the hardware, requiring progress toward a memory‐centric paradigm. Within this context, ternary content‐addressable memory (TCAM) can become an essential platform for high‐speed in‐memory matching applications of large data vectors. Compared to traditional static random‐access memory (SRAM) designs, TCAM technology using non‐volatile resistive memories (RRAMs) in two‐transistor‐two‐resistor (2T2R) configurations presents a cost‐efficient alternative. However, the limited sensing margin between the match and mismatch states in RRAM structures hinders the potential of using memory‐based TCAMs for large‐scale architectures. Therefore, this study proposes a practical device engineering method to improve the switching response of conductive‐bridge memories (CBRAMs) integrated with existing complementary metal‐oxide‐semiconductor (CMOS) transistor technology. Importantly, this work demonstrates a significant improvement in memory window reaching 1.87 × 10 7 by incorporating nanocavity arrays and modifying electrode geometry. Consequently, TCAM cells using nanocavity‐enhanced CBRAM devices can exhibit a considerable increase in resistance ratio up to 6.17 × 10 5 , thereby closely approximating the sensing metrics observed in SRAM‐based TCAMs. The improved sensing capability facilitates the parallel querying of extensive data sets. TCAM array simulations using experimentally verified device models indicate a substantial sensing margin of 65× enabling a parallel search of 2048 bits.
科研通智能强力驱动
Strongly Powered by AbleSci AI