A Computationally Efficient Algorithm for Constructing Effective Vector-Valued Seismic Intensity Measures for Engineering Structures

脆弱性 标量(数学) 地震工程 计算机科学 算法 增量动力分析 支持向量机 非线性系统 过程(计算) 数据挖掘 地震分析 数学优化 结构工程 机器学习 工程类 数学 几何学 物理 量子力学 化学 物理化学 操作系统
作者
Xiaoyue Wang,Zhe Qu
出处
期刊:Journal of Earthquake Engineering [Informa]
卷期号:: 1-22
标识
DOI:10.1080/13632469.2024.2339390
摘要

Seismic intensity measures (IMs) quantify the severity of ground motions and their impacts on structures. They play a vital role in many aspects of earthquake engineering. This paper proposes a novel method, namely the express iteration method (EIM), for constructing effective vector-valued IMs based on dozens of existing scalar ones given a specific engineering structure or a class of them. Taking advantage of the sophisticated while efficient mapping between scalar IMs and engineering demand parameters (EDPs) via a machine learning model, EIM iteratively eliminates less important scalar IMs from a pool of candidates to find the most effective combinations for a vector-valued IM and achieves superior computational efficiency by avoiding updating the nonlinear mapping during the process. Taking a base-isolated structure and its non-isolated counterpart for a demonstrating case study, the performance of the vector-valued IMs determined by EIM is compared with those by other existing methods in the literature for the task of selecting the most unfavorable ground motions. The results show that EIM prioritizes records with the largest peak inter-story drift PIDs and thus leads to the smallest subset that imposes most severe structural damage, while its computational cost was two orders of magnitude smaller as compared to the existing methods of similar effectiveness. Such superior performance can also be expected in all tasks that involve vector-valued IMs, including but not limited to multi-dimensional fragility analysis, incremental dynamic analysis, and real-time seismic damage prediction.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
lingxu发布了新的文献求助10
刚刚
zhongbo发布了新的文献求助10
1秒前
小蘑菇应助微笑芯采纳,获得10
3秒前
4秒前
田様应助童绾绾采纳,获得10
4秒前
Yidie发布了新的文献求助10
5秒前
Jasper应助畅快的俊驰采纳,获得10
5秒前
在水一方应助晚星就位采纳,获得10
5秒前
5秒前
7秒前
纯情的孤风完成签到,获得积分10
7秒前
ding应助努力科研采纳,获得10
7秒前
7秒前
7秒前
7秒前
健壮平灵完成签到,获得积分10
8秒前
8秒前
888发布了新的文献求助50
8秒前
yuanqing完成签到,获得积分20
8秒前
弹幕发布了新的文献求助10
9秒前
10秒前
tf发布了新的文献求助10
11秒前
lizzz发布了新的文献求助10
12秒前
jimey完成签到,获得积分10
12秒前
12秒前
夏夏是只猫完成签到,获得积分10
12秒前
小李完成签到,获得积分20
13秒前
Jacey79完成签到 ,获得积分10
14秒前
MengpoZhao发布了新的文献求助10
14秒前
ylzylz发布了新的文献求助10
15秒前
yeerenn发布了新的文献求助10
15秒前
水蜜桃完成签到 ,获得积分10
16秒前
直率妙梦完成签到,获得积分20
16秒前
赘婿应助胡思采纳,获得10
17秒前
17秒前
量子星尘发布了新的文献求助10
19秒前
19秒前
20秒前
xxh完成签到,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5713133
求助须知:如何正确求助?哪些是违规求助? 5213704
关于积分的说明 15269646
捐赠科研通 4864955
什么是DOI,文献DOI怎么找? 2611759
邀请新用户注册赠送积分活动 1562014
关于科研通互助平台的介绍 1519213