The Breakthrough of Large Language Models Release for Medical Applications: 1-Year Timeline and Perspectives

计算机科学 医疗保健 时间轴 生物医学 健康信息学 数据科学 人工智能 生物信息学 考古 历史 生物 经济 经济增长
作者
Marco Cascella,Federico Semeraro,Jonathan Montomoli,Valentina Bellini,Ornella Piazza,Elena Bignami
出处
期刊:Journal of Medical Systems [Springer Nature]
卷期号:48 (1) 被引量:5
标识
DOI:10.1007/s10916-024-02045-3
摘要

Within the domain of Natural Language Processing (NLP), Large Language Models (LLMs) represent sophisticated models engineered to comprehend, generate, and manipulate text resembling human language on an extensive scale. They are transformer-based deep learning architectures, obtained through the scaling of model size, pretraining of corpora, and computational resources. The potential healthcare applications of these models primarily involve chatbots and interaction systems for clinical documentation management, and medical literature summarization (Biomedical NLP). The challenge in this field lies in the research for applications in diagnostic and clinical decision support, as well as patient triage. Therefore, LLMs can be used for multiple tasks within patient care, research, and education. Throughout 2023, there has been an escalation in the release of LLMs, some of which are applicable in the healthcare domain. This remarkable output is largely the effect of the customization of pre-trained models for applications like chatbots, virtual assistants, or any system requiring human-like conversational engagement. As healthcare professionals, we recognize the imperative to stay at the forefront of knowledge. However, keeping abreast of the rapid evolution of this technology is practically unattainable, and, above all, understanding its potential applications and limitations remains a subject of ongoing debate. Consequently, this article aims to provide a succinct overview of the recently released LLMs, emphasizing their potential use in the field of medicine. Perspectives for a more extensive range of safe and effective applications are also discussed. The upcoming evolutionary leap involves the transition from an AI-powered model primarily designed for answering medical questions to a more versatile and practical tool for healthcare providers such as generalist biomedical AI systems for multimodal-based calibrated decision-making processes. On the other hand, the development of more accurate virtual clinical partners could enhance patient engagement, offering personalized support, and improving chronic disease management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助于安容采纳,获得50
1秒前
qiu完成签到,获得积分20
1秒前
杨旭发布了新的文献求助10
2秒前
2秒前
徐瑶瑶发布了新的文献求助20
2秒前
qqq发布了新的文献求助10
3秒前
4秒前
努力的小狗屁应助666采纳,获得50
5秒前
大个应助嵇之云采纳,获得10
6秒前
陈荣发布了新的文献求助10
6秒前
哈哈哈哈哈哈完成签到,获得积分10
7秒前
7秒前
无辜忆寒完成签到,获得积分10
8秒前
nav完成签到 ,获得积分10
9秒前
9秒前
11秒前
11秒前
正直发箍发布了新的文献求助10
13秒前
hunajx完成签到,获得积分10
13秒前
调研昵称发布了新的文献求助10
14秒前
perchasing应助aprilvanilla采纳,获得10
15秒前
十二完成签到,获得积分10
15秒前
Yolenders完成签到 ,获得积分10
15秒前
徐瑶瑶发布了新的文献求助10
16秒前
17秒前
quanhua应助一杯茶采纳,获得10
17秒前
17秒前
17秒前
18秒前
19秒前
L77发布了新的文献求助10
20秒前
fifteen应助科研通管家采纳,获得10
20秒前
汉堡包应助科研通管家采纳,获得10
20秒前
大模型应助科研通管家采纳,获得30
20秒前
天天快乐应助科研通管家采纳,获得10
20秒前
20秒前
20秒前
22秒前
hmf1995发布了新的文献求助10
22秒前
玩命的小翠完成签到,获得积分10
23秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
Die Gottesanbeterin: Mantis religiosa: 656 500
Communist propaganda: a fact book, 1957-1958 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3170358
求助须知:如何正确求助?哪些是违规求助? 2821551
关于积分的说明 7934795
捐赠科研通 2481787
什么是DOI,文献DOI怎么找? 1322122
科研通“疑难数据库(出版商)”最低求助积分说明 633512
版权声明 602608