材料科学
催化作用
串联
离域电子
选择性
铜
法拉第效率
化学物理
化学工程
纳米技术
电极
物理化学
电化学
化学
有机化学
工程类
冶金
复合材料
生物化学
作者
Yong Jiang,Zhong Liang,Hao Fu,Chao Gu,Yaping Du
标识
DOI:10.1002/adma.202503027
摘要
Abstract Copper (Cu)‐based materials are promising for carbon‐carbon bond (C─C) coupling catalysis, but they are limited to poor structural stability, high activation energy, and low selectivity toward C 2+ products. Here a customized synthetic protocol is defined for the fabrication of 2D ultrathin high‐entropy rare earth (RE) oxides (HE‐REOs) with rich lattice distortions and oxygen vacancies, which act as robust supports for anchoring Cu δ+ serial domains with tunable oxidation states. The rationally integrated HE‐REOs‐Cu δ+ heterostructures feature largely exposed synergistic multi‐site driving rapid *CO spillover, and multiple stabilized Cu δ+ chimneys promoting cascade *CO coupling, together with intrinsic electron activation channels enabling RE 4f electron delocalization to lower the energy barrier. The optimal CeZrZnAgPbO‐Cu 0.44+ self‐tandem catalysts achieve a high Faradaic efficiency (FE) of 51.7% for C 2+ gaseous products at a low potential of ‐0.9 V versus (vs) reversible hydrogen electrode (RHE) in H‐type cell. The study proposes an “all‐in‐one” design principle for advanced RE‐based catalysts through integrating advantageous individuals in a predictable manner.
科研通智能强力驱动
Strongly Powered by AbleSci AI