Plant-derived polysaccharides have emerged as sustainable biopolymers for fabricating nanoparticles (polysaccharide-based nanomaterials [PS-NPs]), presenting unique opportunities to enhance food functionality and human health. PS-NPs exhibit exceptional biocompatibility, biodegradability, and structural versatility, enabling their integration into functional foods to positively influence gut microbiota. This review explores the mechanisms of PS-NPs interaction with gut microbiota, highlighting their ability to promote beneficial microbial populations, such as Lactobacilli and Bifidobacteria, and stimulate the production of short-chain fatty acids. Key synthesis and stabilization methods of PS-NPs are discussed, focusing on their role in improving bioavailability, stability, and gastrointestinal delivery of bioactive compounds in food systems. The potential of PS-NPs to address challenges in food science, including enhancing nutrient absorption, mitigating intestinal dysbiosis, and supporting sustainable food production through innovative nanotechnology, is critically evaluated. Barriers such as enzymatic degradation and physicochemical stability are analyzed, alongside strategies to optimize their functionality within complex food matrices. The integration of PS-NPs in food systems offers a novel approach to modulate gut microbiota, improve intestinal health, and drive the development of next-generation functional foods. Future research should focus on bridging knowledge gaps in metagenomic and metabolomic profiling of PS-NPs, optimizing their design for diverse applications, and advancing their role in sustainable and health-promoting food innovations.