Extracting Drug-drug Interactions from Biomedical Texts using Knowledge Graph Embeddings and Multi-focal Loss

计算机科学 人工智能 Softmax函数 特征(语言学) 图形 判决 分类器(UML) 特征学习 依存语法 短语 自然语言处理 人工神经网络 嵌入 解析 模式识别(心理学) 理论计算机科学 哲学 语言学
作者
Xin Jin,Xia Sun,Jiacheng Chen,Richard F. E. Sutcliffe
标识
DOI:10.1145/3511808.3557318
摘要

The field of Drug-drug interaction (DDI) aims to detect descriptions of interactions between drugs from biomedical texts. Currently, researchers have extracted DDIs using pre-trained language models such as BERT, which often misclassify two kinds of DDI types, "Effect" and "Int", on the DDIExtraction 2013 corpus because of highly similar expressions. The use of knowledge graphs can alleviate this problem by incorporating different relationships for each, thus allowing them to be distinguished. Thus, we propose a novel framework to integrate the neural network with a knowledge graph, where the features from these components are complementary. Specifically, we take text features at different levels into account in the neural network part. This is done by firstly obtaining a word-level position feature using PubMedBERT together with a convolution neural network, secondly, getting a phrase-level key path feature using a dependency parsing tree, thirdly, using PubMedBERT with an attention mechanism to obtain a sentence-level language feature, and finally, fusing these three kinds of representation into a synthesized feature. We also extract a knowledge feature from a drug knowledge graph which takes just a few minutes to construct, then concatenate the synthesized feature with the knowledge feature, feed the result into a multi-layer perceptron and obtain the result by a softmax classifier. In order to achieve a good integration of the synthesized feature and the knowledge feature, we train the model using a novel multifocal loss function, KGE-MFL, which is based on a knowledge graph embedding. Finally we attain state-of-the-art results on the DDIExtraction 2013 dataset (micro F-score 86.24%) and on the ChemProt dataset (micro F-score 77.75%), which proves our framework to be effective for biomedical relation extraction tasks. In particular, we fill the performance gap (more than 5.57%) between methods that rely on and do not rely on knowledge graph embedding on the DDIExtraction 2013 corpus, when predicting the "Int" type. The implementation code is available at https://github.com/NWU-IPMI/DDIE-KGE-MFL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
joshiii发布了新的文献求助10
1秒前
yyh发布了新的文献求助20
1秒前
星辞发布了新的文献求助10
2秒前
zln完成签到,获得积分10
2秒前
爆米花应助苹果大侠采纳,获得10
2秒前
2秒前
zheng发布了新的文献求助10
3秒前
YXHTCM发布了新的文献求助10
3秒前
王不留行完成签到,获得积分10
3秒前
ww发布了新的文献求助10
3秒前
3秒前
完美世界应助负责不愁采纳,获得10
4秒前
小茗发布了新的文献求助10
4秒前
SUMING发布了新的文献求助10
4秒前
12123浪发布了新的文献求助10
5秒前
ta发布了新的文献求助10
5秒前
示羊完成签到,获得积分10
6秒前
啊哈哈哈哈哈完成签到,获得积分10
6秒前
7秒前
7秒前
眉洛发布了新的文献求助10
7秒前
7秒前
木子发布了新的文献求助10
8秒前
8秒前
完美栾发布了新的文献求助10
8秒前
8秒前
liuzhanyu发布了新的文献求助10
9秒前
wAchlNiinM发布了新的文献求助10
9秒前
9秒前
鸟鸣完成签到,获得积分10
9秒前
9秒前
十三月的过客完成签到,获得积分10
9秒前
10秒前
小狗黑头发布了新的文献求助10
10秒前
lalala应助鹿阿布采纳,获得10
11秒前
CipherSage应助Nnn采纳,获得10
12秒前
Jasper应助遇见如风似浪采纳,获得10
12秒前
nn发布了新的文献求助30
12秒前
顾矜应助穆头呼橹橹采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5297798
求助须知:如何正确求助?哪些是违规求助? 4446568
关于积分的说明 13839917
捐赠科研通 4331721
什么是DOI,文献DOI怎么找? 2377860
邀请新用户注册赠送积分活动 1373172
关于科研通互助平台的介绍 1338697