亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Extracting Drug-drug Interactions from Biomedical Texts using Knowledge Graph Embeddings and Multi-focal Loss

计算机科学 人工智能 Softmax函数 特征(语言学) 图形 判决 分类器(UML) 特征学习 依存语法 短语 自然语言处理 人工神经网络 嵌入 解析 模式识别(心理学) 理论计算机科学 哲学 语言学
作者
Xin Jin,Xia Sun,Jiacheng Chen,Richard F. E. Sutcliffe
标识
DOI:10.1145/3511808.3557318
摘要

The field of Drug-drug interaction (DDI) aims to detect descriptions of interactions between drugs from biomedical texts. Currently, researchers have extracted DDIs using pre-trained language models such as BERT, which often misclassify two kinds of DDI types, "Effect" and "Int", on the DDIExtraction 2013 corpus because of highly similar expressions. The use of knowledge graphs can alleviate this problem by incorporating different relationships for each, thus allowing them to be distinguished. Thus, we propose a novel framework to integrate the neural network with a knowledge graph, where the features from these components are complementary. Specifically, we take text features at different levels into account in the neural network part. This is done by firstly obtaining a word-level position feature using PubMedBERT together with a convolution neural network, secondly, getting a phrase-level key path feature using a dependency parsing tree, thirdly, using PubMedBERT with an attention mechanism to obtain a sentence-level language feature, and finally, fusing these three kinds of representation into a synthesized feature. We also extract a knowledge feature from a drug knowledge graph which takes just a few minutes to construct, then concatenate the synthesized feature with the knowledge feature, feed the result into a multi-layer perceptron and obtain the result by a softmax classifier. In order to achieve a good integration of the synthesized feature and the knowledge feature, we train the model using a novel multifocal loss function, KGE-MFL, which is based on a knowledge graph embedding. Finally we attain state-of-the-art results on the DDIExtraction 2013 dataset (micro F-score 86.24%) and on the ChemProt dataset (micro F-score 77.75%), which proves our framework to be effective for biomedical relation extraction tasks. In particular, we fill the performance gap (more than 5.57%) between methods that rely on and do not rely on knowledge graph embedding on the DDIExtraction 2013 corpus, when predicting the "Int" type. The implementation code is available at https://github.com/NWU-IPMI/DDIE-KGE-MFL.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI6应助花开的声音采纳,获得10
1秒前
牛八先生完成签到,获得积分10
2秒前
linsen发布了新的文献求助10
3秒前
ckx完成签到 ,获得积分10
4秒前
5秒前
CipherSage应助yzizz采纳,获得10
5秒前
小蘑菇应助shangxinyu采纳,获得10
7秒前
Moo5_zzZ发布了新的文献求助30
12秒前
yuxi2025完成签到 ,获得积分10
13秒前
JamesPei应助科研通管家采纳,获得10
13秒前
BowieHuang应助科研通管家采纳,获得10
13秒前
shhoing应助科研通管家采纳,获得10
13秒前
田様应助科研通管家采纳,获得10
13秒前
Ava应助科研通管家采纳,获得10
13秒前
JamesPei应助科研通管家采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
13秒前
小马甲应助科研通管家采纳,获得10
13秒前
13秒前
15秒前
15秒前
紫色奶萨发布了新的文献求助10
17秒前
19秒前
任性的岱周完成签到,获得积分10
20秒前
BowieHuang应助泉此方采纳,获得10
20秒前
shangxinyu发布了新的文献求助10
20秒前
狐金华发布了新的文献求助10
21秒前
张流筝完成签到 ,获得积分10
22秒前
CipherSage应助文艺的菀采纳,获得10
26秒前
芝士奶盖有点咸完成签到 ,获得积分10
30秒前
31秒前
boyue完成签到,获得积分10
31秒前
34秒前
朝云完成签到,获得积分10
39秒前
又活了一天完成签到 ,获得积分10
40秒前
尊敬的凝丹完成签到 ,获得积分10
40秒前
黎明深雪完成签到 ,获得积分10
42秒前
万能图书馆应助ztx采纳,获得10
43秒前
两袖清风完成签到 ,获得积分10
46秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5543024
求助须知:如何正确求助?哪些是违规求助? 4629142
关于积分的说明 14610916
捐赠科研通 4570411
什么是DOI,文献DOI怎么找? 2505751
邀请新用户注册赠送积分活动 1483053
关于科研通互助平台的介绍 1454364