清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Extracting Drug-drug Interactions from Biomedical Texts using Knowledge Graph Embeddings and Multi-focal Loss

计算机科学 人工智能 Softmax函数 特征(语言学) 图形 判决 分类器(UML) 特征学习 依存语法 短语 自然语言处理 人工神经网络 嵌入 解析 模式识别(心理学) 理论计算机科学 哲学 语言学
作者
Xin Jin,Xia Sun,Jiacheng Chen,Richard F. E. Sutcliffe
标识
DOI:10.1145/3511808.3557318
摘要

The field of Drug-drug interaction (DDI) aims to detect descriptions of interactions between drugs from biomedical texts. Currently, researchers have extracted DDIs using pre-trained language models such as BERT, which often misclassify two kinds of DDI types, "Effect" and "Int", on the DDIExtraction 2013 corpus because of highly similar expressions. The use of knowledge graphs can alleviate this problem by incorporating different relationships for each, thus allowing them to be distinguished. Thus, we propose a novel framework to integrate the neural network with a knowledge graph, where the features from these components are complementary. Specifically, we take text features at different levels into account in the neural network part. This is done by firstly obtaining a word-level position feature using PubMedBERT together with a convolution neural network, secondly, getting a phrase-level key path feature using a dependency parsing tree, thirdly, using PubMedBERT with an attention mechanism to obtain a sentence-level language feature, and finally, fusing these three kinds of representation into a synthesized feature. We also extract a knowledge feature from a drug knowledge graph which takes just a few minutes to construct, then concatenate the synthesized feature with the knowledge feature, feed the result into a multi-layer perceptron and obtain the result by a softmax classifier. In order to achieve a good integration of the synthesized feature and the knowledge feature, we train the model using a novel multifocal loss function, KGE-MFL, which is based on a knowledge graph embedding. Finally we attain state-of-the-art results on the DDIExtraction 2013 dataset (micro F-score 86.24%) and on the ChemProt dataset (micro F-score 77.75%), which proves our framework to be effective for biomedical relation extraction tasks. In particular, we fill the performance gap (more than 5.57%) between methods that rely on and do not rely on knowledge graph embedding on the DDIExtraction 2013 corpus, when predicting the "Int" type. The implementation code is available at https://github.com/NWU-IPMI/DDIE-KGE-MFL.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
月军完成签到 ,获得积分10
6秒前
宇文非笑完成签到 ,获得积分10
15秒前
胜天半子完成签到 ,获得积分10
31秒前
科研通AI2S应助科研通管家采纳,获得10
40秒前
Owen应助科研通管家采纳,获得10
40秒前
科研通AI2S应助科研通管家采纳,获得10
40秒前
33应助科研通管家采纳,获得10
40秒前
情怀应助科研通管家采纳,获得10
40秒前
麻辣烫完成签到 ,获得积分10
45秒前
jfc完成签到 ,获得积分10
1分钟前
复方蛋酥卷完成签到,获得积分10
1分钟前
1分钟前
李健应助卤味狮子头采纳,获得50
1分钟前
紫熊完成签到,获得积分10
2分钟前
英俊的铭应助科研通管家采纳,获得10
2分钟前
jokerhoney完成签到,获得积分10
2分钟前
2分钟前
charliechen完成签到 ,获得积分10
3分钟前
迷茫的一代完成签到,获得积分10
3分钟前
Jason发布了新的文献求助30
4分钟前
小莫完成签到 ,获得积分10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
Ying发布了新的文献求助10
5分钟前
Rewi_Zhang完成签到,获得积分10
5分钟前
尊敬雪萍完成签到 ,获得积分10
6分钟前
卤味狮子头完成签到,获得积分10
6分钟前
6分钟前
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
6分钟前
Hello应助Quinta采纳,获得10
7分钟前
贪玩的野狼完成签到 ,获得积分10
7分钟前
7分钟前
Quinta完成签到,获得积分10
7分钟前
Quinta发布了新的文献求助10
8分钟前
8分钟前
慕青应助科研通管家采纳,获得10
8分钟前
null_发布了新的文献求助20
9分钟前
zhongu发布了新的文献求助200
9分钟前
高分求助中
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
Plate Tectonics 500
Igneous rocks and processes: a practical guide(第二版) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3417601
求助须知:如何正确求助?哪些是违规求助? 3019235
关于积分的说明 8886869
捐赠科研通 2706747
什么是DOI,文献DOI怎么找? 1484433
科研通“疑难数据库(出版商)”最低求助积分说明 685989
邀请新用户注册赠送积分活动 681168