已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Extracting Drug-drug Interactions from Biomedical Texts using Knowledge Graph Embeddings and Multi-focal Loss

计算机科学 人工智能 Softmax函数 特征(语言学) 图形 判决 分类器(UML) 特征学习 依存语法 短语 自然语言处理 人工神经网络 嵌入 解析 模式识别(心理学) 理论计算机科学 哲学 语言学
作者
Xin Jin,Xia Sun,Jiacheng Chen,Richard F. E. Sutcliffe
标识
DOI:10.1145/3511808.3557318
摘要

The field of Drug-drug interaction (DDI) aims to detect descriptions of interactions between drugs from biomedical texts. Currently, researchers have extracted DDIs using pre-trained language models such as BERT, which often misclassify two kinds of DDI types, "Effect" and "Int", on the DDIExtraction 2013 corpus because of highly similar expressions. The use of knowledge graphs can alleviate this problem by incorporating different relationships for each, thus allowing them to be distinguished. Thus, we propose a novel framework to integrate the neural network with a knowledge graph, where the features from these components are complementary. Specifically, we take text features at different levels into account in the neural network part. This is done by firstly obtaining a word-level position feature using PubMedBERT together with a convolution neural network, secondly, getting a phrase-level key path feature using a dependency parsing tree, thirdly, using PubMedBERT with an attention mechanism to obtain a sentence-level language feature, and finally, fusing these three kinds of representation into a synthesized feature. We also extract a knowledge feature from a drug knowledge graph which takes just a few minutes to construct, then concatenate the synthesized feature with the knowledge feature, feed the result into a multi-layer perceptron and obtain the result by a softmax classifier. In order to achieve a good integration of the synthesized feature and the knowledge feature, we train the model using a novel multifocal loss function, KGE-MFL, which is based on a knowledge graph embedding. Finally we attain state-of-the-art results on the DDIExtraction 2013 dataset (micro F-score 86.24%) and on the ChemProt dataset (micro F-score 77.75%), which proves our framework to be effective for biomedical relation extraction tasks. In particular, we fill the performance gap (more than 5.57%) between methods that rely on and do not rely on knowledge graph embedding on the DDIExtraction 2013 corpus, when predicting the "Int" type. The implementation code is available at https://github.com/NWU-IPMI/DDIE-KGE-MFL.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
于冷松发布了新的文献求助10
8秒前
于冷松完成签到,获得积分10
16秒前
Rn完成签到 ,获得积分0
18秒前
万金油完成签到 ,获得积分10
19秒前
QG完成签到,获得积分10
29秒前
ler0100完成签到 ,获得积分20
30秒前
meimei完成签到 ,获得积分10
31秒前
Hhhhh完成签到 ,获得积分10
36秒前
Dopamine完成签到 ,获得积分10
37秒前
艳艳宝完成签到 ,获得积分10
41秒前
hhhhh完成签到 ,获得积分10
42秒前
幸运的姜姜完成签到 ,获得积分10
42秒前
小白完成签到 ,获得积分10
43秒前
从容以山完成签到 ,获得积分10
45秒前
fang发布了新的文献求助30
47秒前
simon完成签到 ,获得积分10
54秒前
CJY完成签到 ,获得积分10
56秒前
科研通AI6应助科研通管家采纳,获得10
56秒前
小马甲应助科研通管家采纳,获得10
56秒前
领导范儿应助科研通管家采纳,获得10
56秒前
dydydyd完成签到,获得积分10
59秒前
医研完成签到 ,获得积分10
1分钟前
对方正在看文献完成签到,获得积分10
1分钟前
1分钟前
刘博宇完成签到 ,获得积分10
1分钟前
清脆泥猴桃完成签到,获得积分10
1分钟前
minmin完成签到 ,获得积分10
1分钟前
sxb10101发布了新的文献求助10
1分钟前
棠臻完成签到 ,获得积分10
1分钟前
鱼鱼籽不认路完成签到 ,获得积分10
1分钟前
ccc完成签到 ,获得积分10
1分钟前
无极微光应助清脆泥猴桃采纳,获得20
1分钟前
科目三应助白蓝采纳,获得10
1分钟前
1分钟前
白蓝发布了新的文献求助10
1分钟前
戊烷完成签到,获得积分10
1分钟前
李木禾完成签到 ,获得积分10
1分钟前
桉豆完成签到 ,获得积分10
1分钟前
李爱国应助Jodie采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5558368
求助须知:如何正确求助?哪些是违规求助? 4643314
关于积分的说明 14670898
捐赠科研通 4584737
什么是DOI,文献DOI怎么找? 2515112
邀请新用户注册赠送积分活动 1489204
关于科研通互助平台的介绍 1459789