Extracting Drug-drug Interactions from Biomedical Texts using Knowledge Graph Embeddings and Multi-focal Loss

计算机科学 人工智能 Softmax函数 特征(语言学) 图形 判决 分类器(UML) 特征学习 依存语法 短语 自然语言处理 人工神经网络 嵌入 解析 模式识别(心理学) 理论计算机科学 哲学 语言学
作者
Xin Jin,Xia Sun,Jiacheng Chen,Richard F. E. Sutcliffe
标识
DOI:10.1145/3511808.3557318
摘要

The field of Drug-drug interaction (DDI) aims to detect descriptions of interactions between drugs from biomedical texts. Currently, researchers have extracted DDIs using pre-trained language models such as BERT, which often misclassify two kinds of DDI types, "Effect" and "Int", on the DDIExtraction 2013 corpus because of highly similar expressions. The use of knowledge graphs can alleviate this problem by incorporating different relationships for each, thus allowing them to be distinguished. Thus, we propose a novel framework to integrate the neural network with a knowledge graph, where the features from these components are complementary. Specifically, we take text features at different levels into account in the neural network part. This is done by firstly obtaining a word-level position feature using PubMedBERT together with a convolution neural network, secondly, getting a phrase-level key path feature using a dependency parsing tree, thirdly, using PubMedBERT with an attention mechanism to obtain a sentence-level language feature, and finally, fusing these three kinds of representation into a synthesized feature. We also extract a knowledge feature from a drug knowledge graph which takes just a few minutes to construct, then concatenate the synthesized feature with the knowledge feature, feed the result into a multi-layer perceptron and obtain the result by a softmax classifier. In order to achieve a good integration of the synthesized feature and the knowledge feature, we train the model using a novel multifocal loss function, KGE-MFL, which is based on a knowledge graph embedding. Finally we attain state-of-the-art results on the DDIExtraction 2013 dataset (micro F-score 86.24%) and on the ChemProt dataset (micro F-score 77.75%), which proves our framework to be effective for biomedical relation extraction tasks. In particular, we fill the performance gap (more than 5.57%) between methods that rely on and do not rely on knowledge graph embedding on the DDIExtraction 2013 corpus, when predicting the "Int" type. The implementation code is available at https://github.com/NWU-IPMI/DDIE-KGE-MFL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
K_GRAPES完成签到,获得积分10
刚刚
阿坤完成签到,获得积分10
刚刚
2秒前
沙力VAN完成签到,获得积分10
2秒前
kong发布了新的文献求助10
2秒前
728完成签到,获得积分10
2秒前
2秒前
Sera完成签到,获得积分10
3秒前
小城故事和冰雨完成签到,获得积分10
3秒前
ASXC给ASXC的求助进行了留言
3秒前
ld2024完成签到,获得积分10
5秒前
健壮的涑完成签到 ,获得积分10
5秒前
杨晓白完成签到,获得积分10
5秒前
7秒前
金刚大王完成签到,获得积分10
7秒前
Xl完成签到,获得积分10
8秒前
8秒前
想跟这个世界讲个道理完成签到,获得积分10
9秒前
铜离子发布了新的文献求助10
9秒前
CodeCraft应助黄启烽采纳,获得10
9秒前
10秒前
清嘉完成签到,获得积分10
10秒前
yn完成签到,获得积分10
11秒前
儒雅南风完成签到 ,获得积分10
11秒前
结实的栾完成签到,获得积分10
11秒前
无为完成签到 ,获得积分10
12秒前
做实验太菜完成签到,获得积分10
12秒前
专注鸡完成签到,获得积分10
12秒前
甜甜的铭完成签到,获得积分10
12秒前
yuanyuan完成签到,获得积分10
12秒前
Bit完成签到,获得积分10
13秒前
领导范儿应助啦啦啦采纳,获得10
13秒前
yan完成签到,获得积分10
14秒前
Pursuit发布了新的文献求助10
15秒前
自然怀梦完成签到,获得积分10
16秒前
lss发布了新的文献求助10
16秒前
17秒前
17秒前
量子星尘发布了新的文献求助10
17秒前
一一完成签到,获得积分10
18秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953555
求助须知:如何正确求助?哪些是违规求助? 3499137
关于积分的说明 11094114
捐赠科研通 3229679
什么是DOI,文献DOI怎么找? 1785728
邀请新用户注册赠送积分活动 869490
科研通“疑难数据库(出版商)”最低求助积分说明 801478