Extracting Drug-drug Interactions from Biomedical Texts using Knowledge Graph Embeddings and Multi-focal Loss

计算机科学 人工智能 Softmax函数 特征(语言学) 图形 判决 分类器(UML) 特征学习 依存语法 短语 自然语言处理 人工神经网络 嵌入 解析 模式识别(心理学) 理论计算机科学 哲学 语言学
作者
Xin Jin,Xia Sun,Jiacheng Chen,Richard F. E. Sutcliffe
标识
DOI:10.1145/3511808.3557318
摘要

The field of Drug-drug interaction (DDI) aims to detect descriptions of interactions between drugs from biomedical texts. Currently, researchers have extracted DDIs using pre-trained language models such as BERT, which often misclassify two kinds of DDI types, "Effect" and "Int", on the DDIExtraction 2013 corpus because of highly similar expressions. The use of knowledge graphs can alleviate this problem by incorporating different relationships for each, thus allowing them to be distinguished. Thus, we propose a novel framework to integrate the neural network with a knowledge graph, where the features from these components are complementary. Specifically, we take text features at different levels into account in the neural network part. This is done by firstly obtaining a word-level position feature using PubMedBERT together with a convolution neural network, secondly, getting a phrase-level key path feature using a dependency parsing tree, thirdly, using PubMedBERT with an attention mechanism to obtain a sentence-level language feature, and finally, fusing these three kinds of representation into a synthesized feature. We also extract a knowledge feature from a drug knowledge graph which takes just a few minutes to construct, then concatenate the synthesized feature with the knowledge feature, feed the result into a multi-layer perceptron and obtain the result by a softmax classifier. In order to achieve a good integration of the synthesized feature and the knowledge feature, we train the model using a novel multifocal loss function, KGE-MFL, which is based on a knowledge graph embedding. Finally we attain state-of-the-art results on the DDIExtraction 2013 dataset (micro F-score 86.24%) and on the ChemProt dataset (micro F-score 77.75%), which proves our framework to be effective for biomedical relation extraction tasks. In particular, we fill the performance gap (more than 5.57%) between methods that rely on and do not rely on knowledge graph embedding on the DDIExtraction 2013 corpus, when predicting the "Int" type. The implementation code is available at https://github.com/NWU-IPMI/DDIE-KGE-MFL.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
自由寒云发布了新的文献求助10
刚刚
1秒前
1秒前
白小超人完成签到 ,获得积分10
2秒前
威武鸽子完成签到,获得积分10
2秒前
smottom应助很难过采纳,获得10
2秒前
4秒前
4秒前
Dailalala发布了新的文献求助10
4秒前
优雅枫叶完成签到,获得积分20
5秒前
量子星尘发布了新的文献求助10
5秒前
顺心含蕾应助EIS采纳,获得10
7秒前
B站萧亚轩发布了新的文献求助10
8秒前
安元菱完成签到 ,获得积分10
8秒前
8秒前
8秒前
冷静宛海完成签到,获得积分10
9秒前
9秒前
10秒前
fugdu发布了新的文献求助10
10秒前
时舒完成签到 ,获得积分10
10秒前
自信的柠檬完成签到,获得积分20
11秒前
12秒前
善学以致用应助ABC的风格采纳,获得10
13秒前
baron_lin发布了新的文献求助10
13秒前
研友_LN7x6n发布了新的文献求助30
14秒前
852应助风风采纳,获得10
14秒前
Dailalala完成签到,获得积分10
14秒前
15秒前
安静心情发布了新的文献求助10
15秒前
丘比特应助竞鹤采纳,获得10
15秒前
香蕉觅云应助高很帅采纳,获得10
15秒前
16秒前
16秒前
司空天磊发布了新的文献求助10
16秒前
Hydaniel发布了新的文献求助10
16秒前
dd36完成签到,获得积分10
17秒前
昵称11发布了新的文献求助10
19秒前
Owen应助Huguizhou采纳,获得10
19秒前
韩涵完成签到 ,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629991
求助须知:如何正确求助?哪些是违规求助? 4721324
关于积分的说明 14972153
捐赠科研通 4788008
什么是DOI,文献DOI怎么找? 2556688
邀请新用户注册赠送积分活动 1517740
关于科研通互助平台的介绍 1478342