Extracting Drug-drug Interactions from Biomedical Texts using Knowledge Graph Embeddings and Multi-focal Loss

计算机科学 人工智能 Softmax函数 特征(语言学) 图形 判决 分类器(UML) 特征学习 依存语法 短语 自然语言处理 人工神经网络 嵌入 解析 模式识别(心理学) 理论计算机科学 哲学 语言学
作者
Xin Jin,Xia Sun,Jiacheng Chen,Richard F. E. Sutcliffe
标识
DOI:10.1145/3511808.3557318
摘要

The field of Drug-drug interaction (DDI) aims to detect descriptions of interactions between drugs from biomedical texts. Currently, researchers have extracted DDIs using pre-trained language models such as BERT, which often misclassify two kinds of DDI types, "Effect" and "Int", on the DDIExtraction 2013 corpus because of highly similar expressions. The use of knowledge graphs can alleviate this problem by incorporating different relationships for each, thus allowing them to be distinguished. Thus, we propose a novel framework to integrate the neural network with a knowledge graph, where the features from these components are complementary. Specifically, we take text features at different levels into account in the neural network part. This is done by firstly obtaining a word-level position feature using PubMedBERT together with a convolution neural network, secondly, getting a phrase-level key path feature using a dependency parsing tree, thirdly, using PubMedBERT with an attention mechanism to obtain a sentence-level language feature, and finally, fusing these three kinds of representation into a synthesized feature. We also extract a knowledge feature from a drug knowledge graph which takes just a few minutes to construct, then concatenate the synthesized feature with the knowledge feature, feed the result into a multi-layer perceptron and obtain the result by a softmax classifier. In order to achieve a good integration of the synthesized feature and the knowledge feature, we train the model using a novel multifocal loss function, KGE-MFL, which is based on a knowledge graph embedding. Finally we attain state-of-the-art results on the DDIExtraction 2013 dataset (micro F-score 86.24%) and on the ChemProt dataset (micro F-score 77.75%), which proves our framework to be effective for biomedical relation extraction tasks. In particular, we fill the performance gap (more than 5.57%) between methods that rely on and do not rely on knowledge graph embedding on the DDIExtraction 2013 corpus, when predicting the "Int" type. The implementation code is available at https://github.com/NWU-IPMI/DDIE-KGE-MFL.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
linyudie发布了新的文献求助30
刚刚
刚刚
曾阿牛发布了新的文献求助10
2秒前
2秒前
甜美幻露发布了新的文献求助10
2秒前
3秒前
3秒前
天涯发布了新的文献求助10
3秒前
3秒前
3秒前
Xiebro完成签到 ,获得积分10
4秒前
小可不怕困难完成签到,获得积分10
4秒前
zhoushuhui完成签到 ,获得积分10
5秒前
潇潇发布了新的文献求助10
6秒前
张文静发布了新的文献求助10
6秒前
6秒前
悦耳青梦发布了新的文献求助10
6秒前
忧郁映之发布了新的文献求助10
7秒前
7秒前
Hepatology完成签到,获得积分10
7秒前
Tysonqu发布了新的文献求助10
8秒前
8秒前
xlh发布了新的文献求助10
8秒前
张子翀完成签到 ,获得积分10
8秒前
斯文败类应助欲扬先抑采纳,获得10
8秒前
wwww发布了新的文献求助10
10秒前
shiqi关注了科研通微信公众号
10秒前
10秒前
香蕉觅云应助轻松的语海采纳,获得30
11秒前
量子星尘发布了新的文献求助10
11秒前
开朗的宛丝完成签到 ,获得积分10
11秒前
房房不慌完成签到 ,获得积分10
11秒前
11秒前
12秒前
daisy发布了新的文献求助10
12秒前
清风揽月发布了新的文献求助10
13秒前
钱大大发布了新的文献求助10
13秒前
13秒前
柳LL发布了新的文献求助10
13秒前
文静念寒完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5601468
求助须知:如何正确求助?哪些是违规求助? 4686975
关于积分的说明 14846893
捐赠科研通 4681115
什么是DOI,文献DOI怎么找? 2539378
邀请新用户注册赠送积分活动 1506298
关于科研通互助平台的介绍 1471297