Extracting Drug-drug Interactions from Biomedical Texts using Knowledge Graph Embeddings and Multi-focal Loss

计算机科学 人工智能 Softmax函数 特征(语言学) 图形 判决 分类器(UML) 特征学习 依存语法 短语 自然语言处理 人工神经网络 嵌入 解析 模式识别(心理学) 理论计算机科学 哲学 语言学
作者
Xin Jin,Xia Sun,Jiacheng Chen,Richard F. E. Sutcliffe
标识
DOI:10.1145/3511808.3557318
摘要

The field of Drug-drug interaction (DDI) aims to detect descriptions of interactions between drugs from biomedical texts. Currently, researchers have extracted DDIs using pre-trained language models such as BERT, which often misclassify two kinds of DDI types, "Effect" and "Int", on the DDIExtraction 2013 corpus because of highly similar expressions. The use of knowledge graphs can alleviate this problem by incorporating different relationships for each, thus allowing them to be distinguished. Thus, we propose a novel framework to integrate the neural network with a knowledge graph, where the features from these components are complementary. Specifically, we take text features at different levels into account in the neural network part. This is done by firstly obtaining a word-level position feature using PubMedBERT together with a convolution neural network, secondly, getting a phrase-level key path feature using a dependency parsing tree, thirdly, using PubMedBERT with an attention mechanism to obtain a sentence-level language feature, and finally, fusing these three kinds of representation into a synthesized feature. We also extract a knowledge feature from a drug knowledge graph which takes just a few minutes to construct, then concatenate the synthesized feature with the knowledge feature, feed the result into a multi-layer perceptron and obtain the result by a softmax classifier. In order to achieve a good integration of the synthesized feature and the knowledge feature, we train the model using a novel multifocal loss function, KGE-MFL, which is based on a knowledge graph embedding. Finally we attain state-of-the-art results on the DDIExtraction 2013 dataset (micro F-score 86.24%) and on the ChemProt dataset (micro F-score 77.75%), which proves our framework to be effective for biomedical relation extraction tasks. In particular, we fill the performance gap (more than 5.57%) between methods that rely on and do not rely on knowledge graph embedding on the DDIExtraction 2013 corpus, when predicting the "Int" type. The implementation code is available at https://github.com/NWU-IPMI/DDIE-KGE-MFL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI2S应助llll采纳,获得10
2秒前
科研通AI6应助xiaxia采纳,获得10
2秒前
3秒前
愉快的砖家完成签到,获得积分20
3秒前
Akim应助sunshine999采纳,获得10
4秒前
llll发布了新的文献求助10
4秒前
5秒前
7秒前
余一发布了新的文献求助10
9秒前
10秒前
10秒前
oldblack完成签到 ,获得积分10
10秒前
小磊完成签到,获得积分10
10秒前
10秒前
闪电侠完成签到 ,获得积分10
11秒前
科研通AI6应助早晨采纳,获得10
12秒前
13秒前
星星发布了新的文献求助10
14秒前
14秒前
小磊发布了新的文献求助10
15秒前
15秒前
斯文的小蜜蜂完成签到,获得积分10
16秒前
16秒前
16秒前
情怀应助zmy采纳,获得30
18秒前
junet发布了新的文献求助10
19秒前
本末倒纸完成签到 ,获得积分10
19秒前
huracan完成签到,获得积分10
20秒前
天天快乐应助land采纳,获得10
20秒前
王某完成签到,获得积分20
20秒前
21秒前
Na完成签到 ,获得积分10
21秒前
Jasper应助科研通管家采纳,获得100
21秒前
大模型应助科研通管家采纳,获得10
22秒前
香蕉觅云应助科研通管家采纳,获得10
22秒前
Jasper应助科研通管家采纳,获得10
22秒前
orixero应助科研通管家采纳,获得10
22秒前
小蘑菇应助科研通管家采纳,获得10
22秒前
22秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5133536
求助须知:如何正确求助?哪些是违规求助? 4334655
关于积分的说明 13504255
捐赠科研通 4171630
什么是DOI,文献DOI怎么找? 2287267
邀请新用户注册赠送积分活动 1288167
关于科研通互助平台的介绍 1229009