亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Aluminum-based ozone catalysts prepared by mixing method: Characteristics, performance and carbon emissions

催化作用 混合(物理) 化学 分解 流出物 碳纤维 吸附 石油化工 臭氧 化学工程 无机化学 材料科学 环境工程 有机化学 复合材料 环境科学 工程类 物理 复合数 量子力学
作者
Yingming Hu,Panxin Wang,Yu Yin,Min Li,Hongbo Xi,Liya Fu,Changyong Wu
出处
期刊:Chemosphere [Elsevier]
卷期号:349: 140842-140842 被引量:5
标识
DOI:10.1016/j.chemosphere.2023.140842
摘要

Green and low carbon is an essential direction for the development of water treatment technology. Ozone catalysts prepared by the mixing method have advantages in terms of energy consumption and CO2 emissions, but are considered to be insufficient in catalytic efficiency and stability. In this paper, an Mn–Cu–Ce/Al2O3 (MCCA) catalyst was prepared by optimizing the preparation conditions of the mixing method and the types and ratios of active components. Taking petrochemical secondary effluent (PCSE) as the treatment object, the performance of the catalyst and the carbon emission in the preparation process were studied; and compared with the impregnation method. Results showed that compared with catalysts loaded with other components, the MCCA had a higher removal efficiency for TOC (43.04%) and COD (53.18%), which was basically equivalent to the impregnation method, and the treated effluent reached the expected concentration. MCCA promoted the decomposition rate of O3 by ten times, and the main active species generated were found to be •OH and 1O. Similar to the catalytic ozonation by the catalyst prepared by the impregnation method, the adsorption sites and surface hydroxyl groups on the MCCA surface play a significant role in the degradation of pollutants. However, the carbon emission in the catalyst preparation process of the mixing method was 418.68 kg/ton, which was only 44% of the impregnation method (949.67 kg/ton). Under the global low-carbon transition, this study shows that the mixing method aligns more with the concept of green, clean, and efficient ozone catalyst preparation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gzsy完成签到 ,获得积分10
53秒前
从容梦玉发布了新的文献求助100
56秒前
1分钟前
1分钟前
mouxq发布了新的文献求助10
1分钟前
饭点儿别犯愁完成签到,获得积分10
1分钟前
萝卜猪完成签到,获得积分10
2分钟前
hhuajw完成签到,获得积分10
2分钟前
哭泣灯泡完成签到,获得积分10
4分钟前
Future完成签到 ,获得积分10
4分钟前
吴静完成签到 ,获得积分10
4分钟前
明阳完成签到,获得积分10
5分钟前
大白兔完成签到 ,获得积分10
5分钟前
吉吉国王完成签到 ,获得积分10
5分钟前
Fairy完成签到,获得积分10
5分钟前
6分钟前
ll发布了新的文献求助10
6分钟前
爆米花应助ll采纳,获得10
6分钟前
ZJ完成签到,获得积分10
7分钟前
7分钟前
科研通AI6.1应助谭豆豆采纳,获得10
8分钟前
自律完成签到,获得积分10
8分钟前
yys10l完成签到,获得积分10
8分钟前
9分钟前
谭豆豆完成签到,获得积分20
9分钟前
谭豆豆发布了新的文献求助10
9分钟前
9分钟前
Able完成签到,获得积分10
9分钟前
10分钟前
10分钟前
mouxq发布了新的文献求助10
10分钟前
10分钟前
mouxq发布了新的文献求助10
11分钟前
路漫漫其修远兮完成签到 ,获得积分10
12分钟前
特特雷珀萨努完成签到 ,获得积分10
12分钟前
阿藏完成签到,获得积分10
12分钟前
饼干吃土豆完成签到,获得积分10
12分钟前
film完成签到 ,获得积分10
12分钟前
13分钟前
阿藏发布了新的文献求助10
13分钟前
高分求助中
Operational Bulk Evaporation Duct Model for MORIAH Version 1.2 1200
Signals, Systems, and Signal Processing 880
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Discrete-Time Signals and Systems 510
Industrial Organic Chemistry, 5th Edition 400
Multiple Regression and Beyond An Introduction to Multiple Regression and Structural Equation Modeling 4th Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5845543
求助须知:如何正确求助?哪些是违规求助? 6204305
关于积分的说明 15616510
捐赠科研通 4962329
什么是DOI,文献DOI怎么找? 2675436
邀请新用户注册赠送积分活动 1620135
关于科研通互助平台的介绍 1575480