Intelligent Bearing Anomaly Detection for Industrial Internet of Things Based on Auto-Encoder Wasserstein Generative Adversarial Network

计算机科学 对抗制 异常检测 工业互联网 物联网 人工智能 生成语法 编码器 自编码 计算机安全 人工神经网络 计算机网络 数据挖掘 操作系统
作者
Ruonan Liu,Xiao Dong,Di Lin,Weidong Zhang
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (13): 22869-22879 被引量:2
标识
DOI:10.1109/jiot.2024.3358871
摘要

Bearing anomaly detection plays a crucial role in modern industries as most rotating machinery faults are attributed to faulty bearings. However, acquiring fault samples in industry is a time-consuming and expensive process. To address this issue, this paper presents an integrated unsupervised learning method named AE-AnoWGAN (Autoencoder Wasserstein Generative Adversarial Network). AE-AnoWGAN is capable of detecting abnormal bearings and performing anomaly localization without the need for labeled data. In this approach, industrial data is initially processed using continuous wavelet transform to convert it into time-frequency representations (TFRs). These TFRs are then fed into the integrated AE-AnoWGAN for training. AE-AnoWGAN consists of multiple encoder-decoder and discriminator pairs, which are randomly paired and trained using adversarial training. The encoder maps the TFRs to a latent space, and the pre-trained generator acts as the decoder to generate reconstructed TFRs. During the testing phase, the model calculates anomaly scores for the input TFRs. Experimental evaluations were conducted using the PU bearing dataset and IMS bearing dataset. Comparative results demonstrate that the proposed AE-AnoWGAN method outperforms existing approaches in terms of anomaly detection accuracy. Moreover, the method exhibits high anomaly detection efficiency, making it suitable for real-time monitoring applications. Furthermore, this method provides practical value by enabling anomaly localization and bearing degradation estimation of TFRs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助呆萌的天宇采纳,获得10
2秒前
小涂大大发布了新的文献求助10
3秒前
整齐凌萱发布了新的文献求助10
3秒前
3秒前
JIE发布了新的文献求助10
5秒前
汉堡包应助哈哈哈采纳,获得10
5秒前
5秒前
YY发布了新的文献求助10
7秒前
成就小蜜蜂完成签到,获得积分20
8秒前
葉鳳怡完成签到 ,获得积分10
8秒前
8秒前
LXZ完成签到,获得积分10
9秒前
10秒前
斯文败类应助自由白山采纳,获得10
10秒前
呆萌的天宇完成签到,获得积分10
10秒前
11秒前
英俊的铭应助小涂大大采纳,获得10
11秒前
jhx完成签到,获得积分10
11秒前
温敏应助葡挞采纳,获得10
11秒前
12秒前
12秒前
wanliduxing给wanliduxing的求助进行了留言
12秒前
斯文败类应助起风了采纳,获得10
13秒前
13秒前
超级行恶发布了新的文献求助10
13秒前
YY完成签到,获得积分10
14秒前
14秒前
执着夏山发布了新的文献求助30
15秒前
fufu关注了科研通微信公众号
15秒前
大个应助可乐不加冰采纳,获得10
16秒前
16秒前
www www12发布了新的文献求助10
16秒前
16秒前
大大完成签到,获得积分10
18秒前
poiuy完成签到 ,获得积分10
19秒前
SSY完成签到,获得积分10
19秒前
科目三应助浅眠采纳,获得10
19秒前
21秒前
SSY发布了新的文献求助10
21秒前
小涂大大完成签到,获得积分20
22秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139002
求助须知:如何正确求助?哪些是违规求助? 2789909
关于积分的说明 7793227
捐赠科研通 2446337
什么是DOI,文献DOI怎么找? 1301061
科研通“疑难数据库(出版商)”最低求助积分说明 626087
版权声明 601096