Intelligent Bearing Anomaly Detection for Industrial Internet of Things Based on Auto-Encoder Wasserstein Generative Adversarial Network

计算机科学 对抗制 异常检测 工业互联网 物联网 人工智能 生成语法 编码器 自编码 计算机安全 人工神经网络 计算机网络 数据挖掘 操作系统
作者
Ruonan Liu,Xiao Dong,Di Lin,Weidong Zhang
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (13): 22869-22879 被引量:2
标识
DOI:10.1109/jiot.2024.3358871
摘要

Bearing anomaly detection plays a crucial role in modern industries as most rotating machinery faults are attributed to faulty bearings. However, acquiring fault samples in industry is a time-consuming and expensive process. To address this issue, this paper presents an integrated unsupervised learning method named AE-AnoWGAN (Autoencoder Wasserstein Generative Adversarial Network). AE-AnoWGAN is capable of detecting abnormal bearings and performing anomaly localization without the need for labeled data. In this approach, industrial data is initially processed using continuous wavelet transform to convert it into time-frequency representations (TFRs). These TFRs are then fed into the integrated AE-AnoWGAN for training. AE-AnoWGAN consists of multiple encoder-decoder and discriminator pairs, which are randomly paired and trained using adversarial training. The encoder maps the TFRs to a latent space, and the pre-trained generator acts as the decoder to generate reconstructed TFRs. During the testing phase, the model calculates anomaly scores for the input TFRs. Experimental evaluations were conducted using the PU bearing dataset and IMS bearing dataset. Comparative results demonstrate that the proposed AE-AnoWGAN method outperforms existing approaches in terms of anomaly detection accuracy. Moreover, the method exhibits high anomaly detection efficiency, making it suitable for real-time monitoring applications. Furthermore, this method provides practical value by enabling anomaly localization and bearing degradation estimation of TFRs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Junjiem完成签到,获得积分10
刚刚
危机的毛衣完成签到,获得积分10
刚刚
aniu完成签到,获得积分10
刚刚
小小小小发布了新的文献求助10
1秒前
1秒前
彭于晏应助sln采纳,获得10
1秒前
传奇3应助土书采纳,获得30
2秒前
小伙子完成签到,获得积分0
2秒前
之昂完成签到 ,获得积分10
3秒前
酷波er应助简单灵凡采纳,获得10
3秒前
热切菩萨应助1renebaebae采纳,获得10
3秒前
LEMONS应助1renebaebae采纳,获得10
3秒前
ifast完成签到 ,获得积分10
3秒前
华仔应助xingwen采纳,获得10
3秒前
斯文以蓝完成签到,获得积分10
3秒前
eisenchen完成签到,获得积分10
4秒前
4秒前
4秒前
LEMONS应助科研通管家采纳,获得10
4秒前
t通应助科研通管家采纳,获得10
4秒前
领导范儿应助科研通管家采纳,获得10
4秒前
ED应助科研通管家采纳,获得10
5秒前
Akim应助科研通管家采纳,获得10
5秒前
ding应助科研通管家采纳,获得10
5秒前
上官若男应助科研通管家采纳,获得10
5秒前
5秒前
Owen应助科研通管家采纳,获得10
5秒前
在水一方应助科研通管家采纳,获得10
5秒前
LEMONS应助科研通管家采纳,获得10
5秒前
5秒前
菠萝炒饭应助科研通管家采纳,获得10
5秒前
LEMONS应助科研通管家采纳,获得10
5秒前
小二郎应助科研通管家采纳,获得10
5秒前
ED应助科研通管家采纳,获得10
5秒前
5秒前
菠萝炒饭应助科研通管家采纳,获得10
5秒前
5秒前
LEMONS应助科研通管家采纳,获得10
5秒前
5秒前
JamesPei应助科研通管家采纳,获得10
6秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960905
求助须知:如何正确求助?哪些是违规求助? 3507164
关于积分的说明 11134060
捐赠科研通 3239538
什么是DOI,文献DOI怎么找? 1790202
邀请新用户注册赠送积分活动 872199
科研通“疑难数据库(出版商)”最低求助积分说明 803149