Transformer enhanced by local perception self-attention for dynamic soft sensor modeling of industrial processes

感知 变压器 计算机科学 工程类 心理学 电气工程 电压 神经科学
作者
Zeyu Fang,Shiwei Gao,Xiaochao Dang,Xiaohui Dong,Qiong Wang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (5): 055123-055123 被引量:1
标识
DOI:10.1088/1361-6501/ad25dd
摘要

Abstract The use of dynamic soft sensor modeling methods to mine the time-varying and dynamic characteristics of industrial process data is of great significance for improving production efficiency and quality, given the rapid development of industrial processes and the increasing prominence of dynamic changes in the production process. However, existing dynamic soft sensor methods have limited long-term memory capacity, making it difficult to capture the long dynamic dependence, which can severely affect the results of the soft sensor model. To address this issue, we propose a dynamic soft sensor model based on local perception transformer, where the transformer is applied to achieve global perception of the variables. Through the application of the self-attention mechanism in the transformer encoder, the dynamic tracking and prediction of parameters can be realized by assigning different weights to the process variables and quality variables at different time steps, thereby adapting to the time-varying nature of the process. Additionally, convolution is used to generate a Query and Key in the self-attention mechanism, thereby enhancing local information learning. The proposed dot product self-attention calculation method effectively utilizes local information, thereby reducing the potential impact of abnormal data at a certain moment. Furthermore, by utilizing LSTM to extract time series information, the final prediction result was obtained. In soft sensor modeling experiments of the sulfur recovery unit and debutanizer tower, our proposed model demonstrated higher prediction accuracy compared to other methods, such as SVR, MLP, LSTM, CNN + LSTM, and vanilla transformer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小马甲应助鸣隐采纳,获得10
刚刚
ycd完成签到,获得积分10
1秒前
ark861023完成签到,获得积分10
1秒前
淡定问芙完成签到,获得积分10
1秒前
斯文败类应助惠惠采纳,获得10
2秒前
2秒前
Meowly完成签到,获得积分10
2秒前
3秒前
3秒前
陶醉觅夏发布了新的文献求助10
3秒前
pu完成签到,获得积分10
3秒前
小灵通完成签到,获得积分10
3秒前
给我找发布了新的文献求助10
3秒前
科研通AI2S应助LIn采纳,获得10
4秒前
gaga完成签到,获得积分10
4秒前
_Charmo完成签到,获得积分10
4秒前
Slemon完成签到,获得积分10
4秒前
谦谦姜完成签到,获得积分10
6秒前
7秒前
JINGZHANG发布了新的文献求助10
7秒前
7秒前
归海天与应助糊弄学专家采纳,获得10
7秒前
风中的青完成签到,获得积分10
8秒前
8秒前
8秒前
duxinyue关注了科研通微信公众号
9秒前
超级宇宙二踢脚关注了科研通微信公众号
9秒前
10秒前
10秒前
11秒前
务实盼海发布了新的文献求助10
11秒前
徐徐徐徐发布了新的文献求助10
12秒前
星晴遇见花海完成签到,获得积分10
12秒前
乐乐应助Rrr采纳,获得10
13秒前
难过鸿涛应助srt采纳,获得10
14秒前
15秒前
卡卡发布了新的文献求助10
15秒前
15秒前
17秒前
Jasper应助刘芸芸采纳,获得10
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794