已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Transformer enhanced by local perception self-attention for dynamic soft sensor modeling of industrial processes

感知 变压器 计算机科学 工程类 心理学 电气工程 电压 神经科学
作者
Zeyu Fang,Shiwei Gao,Xiaochao Dang,Xiaohui Dong,Qiong Wang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (5): 055123-055123 被引量:1
标识
DOI:10.1088/1361-6501/ad25dd
摘要

Abstract The use of dynamic soft sensor modeling methods to mine the time-varying and dynamic characteristics of industrial process data is of great significance for improving production efficiency and quality, given the rapid development of industrial processes and the increasing prominence of dynamic changes in the production process. However, existing dynamic soft sensor methods have limited long-term memory capacity, making it difficult to capture the long dynamic dependence, which can severely affect the results of the soft sensor model. To address this issue, we propose a dynamic soft sensor model based on local perception transformer, where the transformer is applied to achieve global perception of the variables. Through the application of the self-attention mechanism in the transformer encoder, the dynamic tracking and prediction of parameters can be realized by assigning different weights to the process variables and quality variables at different time steps, thereby adapting to the time-varying nature of the process. Additionally, convolution is used to generate a Query and Key in the self-attention mechanism, thereby enhancing local information learning. The proposed dot product self-attention calculation method effectively utilizes local information, thereby reducing the potential impact of abnormal data at a certain moment. Furthermore, by utilizing LSTM to extract time series information, the final prediction result was obtained. In soft sensor modeling experiments of the sulfur recovery unit and debutanizer tower, our proposed model demonstrated higher prediction accuracy compared to other methods, such as SVR, MLP, LSTM, CNN + LSTM, and vanilla transformer.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
timo完成签到,获得积分10
2秒前
荼柒完成签到,获得积分10
3秒前
马马虎虎发布了新的文献求助10
3秒前
3秒前
4秒前
6秒前
9秒前
qin希望应助uziMOF采纳,获得10
9秒前
求捞求捞求捞应助uziMOF采纳,获得10
9秒前
明明如月完成签到,获得积分10
9秒前
闪光喵喵完成签到,获得积分10
10秒前
荼柒完成签到,获得积分10
11秒前
爱笑蛋挞完成签到 ,获得积分10
13秒前
wengjiaqi完成签到,获得积分10
15秒前
香蕉觅云应助yelide采纳,获得10
16秒前
荼柒完成签到,获得积分10
16秒前
VDC应助花花采纳,获得30
18秒前
20秒前
不配.应助乔夜白采纳,获得10
20秒前
ding应助cruise采纳,获得10
21秒前
23秒前
舒心迎夏完成签到 ,获得积分10
24秒前
24秒前
25秒前
汉堡包应助天真的皓轩采纳,获得10
25秒前
26秒前
泥巴发布了新的文献求助10
28秒前
orixero应助yy超爱看文献采纳,获得10
28秒前
29秒前
30秒前
Clark完成签到 ,获得积分10
32秒前
yelide发布了新的文献求助10
32秒前
iMoney完成签到 ,获得积分10
32秒前
wyyyyyyyt完成签到,获得积分10
33秒前
薄荷梨应助蓝天采纳,获得10
33秒前
33秒前
daisyyy完成签到 ,获得积分10
33秒前
cruise发布了新的文献求助10
33秒前
buno应助吕培森采纳,获得10
36秒前
36秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3234275
求助须知:如何正确求助?哪些是违规求助? 2880628
关于积分的说明 8216394
捐赠科研通 2548249
什么是DOI,文献DOI怎么找? 1377627
科研通“疑难数据库(出版商)”最低求助积分说明 647925
邀请新用户注册赠送积分活动 623302