Toward Secure and Robust Steganography for Black-Box Generated Images

计算机科学 隐写术 黑匣子 计算机安全 隐写工具 稳健性(进化) 计算机视觉 人工智能 计算机图形学(图像) 图像(数学) 生物化学 化学 基因
作者
Kai Zeng,Kejiang Chen,Jiansong Zhang,Weiming Zhang,Nenghai Yu
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:19: 3237-3250 被引量:3
标识
DOI:10.1109/tifs.2024.3361220
摘要

The progression of text-to-image generation models has incited an upsurge in disseminating generated images across social networks, providing a fertile ground for steganography. Presently, the majority of generated images are crafted utilizing black-box APIs and social networks employ lossy compression on uploaded images. However, there is a dearth of steganographic research conducted on black-box generated images, and the distinctive attributes of the generation model have not been harnessed, resulting in a performance that fails to achieve both security and robustness simultaneously. To address these challenges, we propose an innovative steganographic framework, Steganography based on Concomitantly shaRing generated Images and PrompTs (SCRIPT). This framework ensures security and robustness by precisely identifying robust coefficients within the image for message embedding and synchronizing their positions. For precise identification, we assess the ability of coefficients to withstand unknown spatial perturbations, employing this metric to quantify their robustness. For positional synchronization of robust coefficients, the relevant prompts are uploaded alongside the stego image, allowing the recipient to reconstruct the cover image using a mutually agreed random seed and the provided prompt. Subsequently, positional synchronization is achieved by consistently adopting an identical method for selecting robust coefficients between the sender and the recipient. By amalgamating these strategies, SCRIPT significantly surpasses prior algorithms. Empirical results validate our approach, with a noteworthy 98% message extraction success rate and a substantial 20%+ enhancement in security across diverse payloads.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
搜集达人应助ZJ采纳,获得10
1秒前
在水一方应助nrx采纳,获得10
2秒前
Henwenwen6完成签到,获得积分10
2秒前
3秒前
4秒前
1111222333发布了新的文献求助10
5秒前
5秒前
junzhu完成签到,获得积分10
6秒前
123321发布了新的文献求助10
8秒前
jingcheng发布了新的文献求助10
9秒前
香蕉觅云应助平淡小猫咪采纳,获得10
9秒前
10秒前
11秒前
11秒前
超级小虾米完成签到,获得积分20
11秒前
NexusExplorer应助zhaozhao采纳,获得10
12秒前
12秒前
赘婿应助1111222333采纳,获得10
12秒前
yinlu完成签到,获得积分10
14秒前
领导范儿应助科研通管家采纳,获得10
15秒前
彭于晏应助科研通管家采纳,获得10
15秒前
苹果酸奶发布了新的文献求助10
15秒前
香蕉觅云应助科研通管家采纳,获得10
16秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
共享精神应助科研通管家采纳,获得10
16秒前
小二郎应助科研通管家采纳,获得10
16秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
汉堡包应助科研通管家采纳,获得10
16秒前
情怀应助科研通管家采纳,获得10
16秒前
大个应助科研通管家采纳,获得30
16秒前
田様应助科研通管家采纳,获得10
16秒前
16秒前
YXF应助科研通管家采纳,获得10
16秒前
赘婿应助科研通管家采纳,获得10
16秒前
顾矜应助科研通管家采纳,获得10
16秒前
CipherSage应助科研通管家采纳,获得10
17秒前
深情安青应助科研通管家采纳,获得10
17秒前
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3516025
求助须知:如何正确求助?哪些是违规求助? 3098196
关于积分的说明 9238731
捐赠科研通 2793241
什么是DOI,文献DOI怎么找? 1532920
邀请新用户注册赠送积分活动 712455
科研通“疑难数据库(出版商)”最低求助积分说明 707272