Multi-Contrast Complementary Learning for Accelerated MR Imaging

计算机科学 欠采样 人工智能 模态(人机交互) 模式识别(心理学) 迭代重建 对比度(视觉) 融合机制 卷积(计算机科学) 计算机视觉 机器学习 人工神经网络 融合 语言学 哲学 脂质双层融合
作者
Bangjun Li,Weifeng Hu,Chun-Mei Feng,Yujun Li,Zhi Liu,Yong Xu
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (3): 1436-1447 被引量:5
标识
DOI:10.1109/jbhi.2023.3348328
摘要

Thanks to its powerful ability to depict high-resolution anatomical information, magnetic resonance imaging (MRI) has become an essential non-invasive scanning technique in clinical practice. However, excessive acquisition time often leads to the degradation of image quality and psychological discomfort among subjects, hindering its further popularization. Besides reconstructing images from the undersampled protocol itself, multi-contrast MRI protocols bring promising solutions by leveraging additional morphological priors for the target modality. Nevertheless, previous multi-contrast techniques mainly adopt a simple fusion mechanism that inevitably ignores valuable knowledge. In this work, we propose a novel multi-contrast complementary information aggregation network named MCCA, aiming to exploit available complementary representations fully to reconstruct the undersampled modality. Specifically, a multi-scale feature fusion mechanism has been introduced to incorporate complementary-transferable knowledge into the target modality. Moreover, a hybrid convolution transformer block was developed to extract global-local context dependencies simultaneously, which combines the advantages of CNNs while maintaining the merits of Transformers. Compared to existing MRI reconstruction methods, the proposed method has demonstrated its superiority through extensive experiments on different datasets under different acceleration factors and undersampling patterns.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
玉苏甫完成签到 ,获得积分10
1秒前
1秒前
2秒前
2秒前
3秒前
红绿蓝完成签到 ,获得积分10
3秒前
韩凡发布了新的文献求助10
3秒前
baiyu发布了新的文献求助10
3秒前
FashionBoy应助云端梦境采纳,获得10
4秒前
善良思松发布了新的文献求助10
4秒前
Benzhdw发布了新的文献求助10
5秒前
迷路无声完成签到,获得积分10
5秒前
科研顺利完成签到,获得积分10
5秒前
6秒前
小五发布了新的文献求助10
6秒前
HJJHJH发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
7秒前
迷路无声发布了新的文献求助10
7秒前
风风完成签到 ,获得积分10
8秒前
分隔符发布了新的文献求助10
8秒前
10秒前
10秒前
忧伤的冰棍完成签到,获得积分10
11秒前
方黎昕完成签到,获得积分10
13秒前
攀登转化高峰完成签到,获得积分10
13秒前
赵铁柱发布了新的文献求助10
14秒前
eliot发布了新的文献求助10
16秒前
dada发布了新的文献求助10
16秒前
量子星尘发布了新的文献求助10
19秒前
tong完成签到,获得积分10
20秒前
20秒前
20秒前
科研通AI2S应助栖迟采纳,获得10
21秒前
欢呼凡英完成签到,获得积分10
21秒前
bkagyin应助小五采纳,获得10
22秒前
方黎昕发布了新的文献求助10
24秒前
24秒前
25秒前
28秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
An experimental and analytical investigation on the fatigue behaviour of fuselage riveted lap joints: The significance of the rivet squeeze force, and a comparison of 2024-T3 and Glare 3 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3664444
求助须知:如何正确求助?哪些是违规求助? 3224488
关于积分的说明 9757694
捐赠科研通 2934379
什么是DOI,文献DOI怎么找? 1606832
邀请新用户注册赠送积分活动 758873
科研通“疑难数据库(出版商)”最低求助积分说明 735012