Multi-Contrast Complementary Learning for Accelerated MR Imaging

计算机科学 欠采样 人工智能 模态(人机交互) 模式识别(心理学) 迭代重建 对比度(视觉) 融合机制 卷积(计算机科学) 计算机视觉 机器学习 人工神经网络 融合 语言学 哲学 脂质双层融合
作者
Bangjun Li,Weifeng Hu,Chun-Mei Feng,Yujun Li,Zhi Liu,Yong Xu
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (3): 1436-1447 被引量:8
标识
DOI:10.1109/jbhi.2023.3348328
摘要

Thanks to its powerful ability to depict high-resolution anatomical information, magnetic resonance imaging (MRI) has become an essential non-invasive scanning technique in clinical practice. However, excessive acquisition time often leads to the degradation of image quality and psychological discomfort among subjects, hindering its further popularization. Besides reconstructing images from the undersampled protocol itself, multi-contrast MRI protocols bring promising solutions by leveraging additional morphological priors for the target modality. Nevertheless, previous multi-contrast techniques mainly adopt a simple fusion mechanism that inevitably ignores valuable knowledge. In this work, we propose a novel multi-contrast complementary information aggregation network named MCCA, aiming to exploit available complementary representations fully to reconstruct the undersampled modality. Specifically, a multi-scale feature fusion mechanism has been introduced to incorporate complementary-transferable knowledge into the target modality. Moreover, a hybrid convolution transformer block was developed to extract global-local context dependencies simultaneously, which combines the advantages of CNNs while maintaining the merits of Transformers. Compared to existing MRI reconstruction methods, the proposed method has demonstrated its superiority through extensive experiments on different datasets under different acceleration factors and undersampling patterns.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
镜燃发布了新的文献求助10
1秒前
2秒前
NicotineZen完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
3秒前
干净的凡桃完成签到,获得积分10
3秒前
英俊的铭应助文俊伟采纳,获得30
4秒前
6秒前
fatcat完成签到,获得积分10
6秒前
pluto应助move采纳,获得10
8秒前
8秒前
xcx发布了新的文献求助10
8秒前
9秒前
9秒前
实验室应助Sunbrust采纳,获得30
10秒前
one完成签到 ,获得积分10
11秒前
q183发布了新的文献求助10
11秒前
送外卖了完成签到,获得积分10
11秒前
翁醉山完成签到,获得积分10
11秒前
12秒前
彭于晏应助南瓜饼子铺采纳,获得10
13秒前
14秒前
隐形的宝宝完成签到,获得积分10
14秒前
圣斗士发布了新的文献求助10
14秒前
14秒前
镜燃完成签到 ,获得积分10
15秒前
科研通AI6应助Tomasong采纳,获得10
15秒前
正直芫发布了新的文献求助10
15秒前
毛豆爸爸应助科研通管家采纳,获得10
16秒前
16秒前
浮游应助科研通管家采纳,获得10
16秒前
浮游应助科研通管家采纳,获得10
16秒前
SciGPT应助科研通管家采纳,获得10
16秒前
打打应助科研通管家采纳,获得10
16秒前
搜集达人应助科研通管家采纳,获得10
16秒前
香蕉觅云应助科研通管家采纳,获得10
16秒前
毛豆爸爸应助科研通管家采纳,获得10
16秒前
FashionBoy应助科研通管家采纳,获得10
17秒前
浮游应助科研通管家采纳,获得10
17秒前
17秒前
浅海111完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5653053
求助须知:如何正确求助?哪些是违规求助? 4789236
关于积分的说明 15062819
捐赠科研通 4811737
什么是DOI,文献DOI怎么找? 2574034
邀请新用户注册赠送积分活动 1529786
关于科研通互助平台的介绍 1488422