Multi-Contrast Complementary Learning for Accelerated MR Imaging

计算机科学 欠采样 人工智能 模态(人机交互) 模式识别(心理学) 迭代重建 对比度(视觉) 融合机制 卷积(计算机科学) 计算机视觉 机器学习 人工神经网络 融合 语言学 脂质双层融合 哲学
作者
Bangjun Li,Weifeng Hu,Chun-Mei Feng,Yujun Li,Zhi Liu,Yong Xu
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (3): 1436-1447 被引量:5
标识
DOI:10.1109/jbhi.2023.3348328
摘要

Thanks to its powerful ability to depict high-resolution anatomical information, magnetic resonance imaging (MRI) has become an essential non-invasive scanning technique in clinical practice. However, excessive acquisition time often leads to the degradation of image quality and psychological discomfort among subjects, hindering its further popularization. Besides reconstructing images from the undersampled protocol itself, multi-contrast MRI protocols bring promising solutions by leveraging additional morphological priors for the target modality. Nevertheless, previous multi-contrast techniques mainly adopt a simple fusion mechanism that inevitably ignores valuable knowledge. In this work, we propose a novel multi-contrast complementary information aggregation network named MCCA, aiming to exploit available complementary representations fully to reconstruct the undersampled modality. Specifically, a multi-scale feature fusion mechanism has been introduced to incorporate complementary-transferable knowledge into the target modality. Moreover, a hybrid convolution transformer block was developed to extract global-local context dependencies simultaneously, which combines the advantages of CNNs while maintaining the merits of Transformers. Compared to existing MRI reconstruction methods, the proposed method has demonstrated its superiority through extensive experiments on different datasets under different acceleration factors and undersampling patterns.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
1秒前
菜鸡5号完成签到,获得积分10
1秒前
aaaa发布了新的文献求助10
1秒前
冰强发布了新的文献求助10
2秒前
DNAdamage发布了新的文献求助10
2秒前
2秒前
科研通AI2S应助111采纳,获得10
3秒前
FashionBoy应助xshlzwyyh采纳,获得10
4秒前
紫熊发布了新的文献求助10
4秒前
4秒前
上官若男应助n张黎明采纳,获得10
4秒前
yellow完成签到,获得积分10
5秒前
风行君完成签到,获得积分10
5秒前
xu发布了新的文献求助10
6秒前
Lin完成签到 ,获得积分10
6秒前
callmefather发布了新的文献求助10
7秒前
止心所至完成签到 ,获得积分10
8秒前
科研通AI2S应助史莱莱莱姆采纳,获得10
8秒前
充电宝应助冰强采纳,获得10
9秒前
10秒前
甜甜圈完成签到 ,获得积分10
12秒前
lemon完成签到 ,获得积分10
12秒前
Zyysby完成签到,获得积分10
12秒前
之星君完成签到,获得积分10
12秒前
谷晋羽完成签到,获得积分10
16秒前
起名字好难完成签到,获得积分10
16秒前
17秒前
正直的啤酒完成签到,获得积分10
18秒前
华仔应助peng采纳,获得10
18秒前
xu完成签到,获得积分10
18秒前
22秒前
24秒前
24秒前
zp发布了新的文献求助10
25秒前
幻想Cloudy完成签到 ,获得积分0
25秒前
25秒前
漂亮的从灵完成签到,获得积分10
27秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Saponins and sapogenins. IX. Saponins and sapogenins of Luffa aegyptica mill seeds (black variety) 500
Fundamentals of Dispersed Multiphase Flows 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3260724
求助须知:如何正确求助?哪些是违规求助? 2901803
关于积分的说明 8317417
捐赠科研通 2571442
什么是DOI,文献DOI怎么找? 1397024
科研通“疑难数据库(出版商)”最低求助积分说明 653638
邀请新用户注册赠送积分活动 632123