Multi-Contrast Complementary Learning for Accelerated MR Imaging

计算机科学 欠采样 人工智能 模态(人机交互) 模式识别(心理学) 迭代重建 对比度(视觉) 融合机制 卷积(计算机科学) 计算机视觉 机器学习 人工神经网络 融合 语言学 脂质双层融合 哲学
作者
Bangjun Li,Weifeng Hu,Chun-Mei Feng,Yujun Li,Zhi Liu,Yong Xu
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (3): 1436-1447 被引量:8
标识
DOI:10.1109/jbhi.2023.3348328
摘要

Thanks to its powerful ability to depict high-resolution anatomical information, magnetic resonance imaging (MRI) has become an essential non-invasive scanning technique in clinical practice. However, excessive acquisition time often leads to the degradation of image quality and psychological discomfort among subjects, hindering its further popularization. Besides reconstructing images from the undersampled protocol itself, multi-contrast MRI protocols bring promising solutions by leveraging additional morphological priors for the target modality. Nevertheless, previous multi-contrast techniques mainly adopt a simple fusion mechanism that inevitably ignores valuable knowledge. In this work, we propose a novel multi-contrast complementary information aggregation network named MCCA, aiming to exploit available complementary representations fully to reconstruct the undersampled modality. Specifically, a multi-scale feature fusion mechanism has been introduced to incorporate complementary-transferable knowledge into the target modality. Moreover, a hybrid convolution transformer block was developed to extract global-local context dependencies simultaneously, which combines the advantages of CNNs while maintaining the merits of Transformers. Compared to existing MRI reconstruction methods, the proposed method has demonstrated its superiority through extensive experiments on different datasets under different acceleration factors and undersampling patterns.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
时光完成签到,获得积分10
刚刚
Zz发布了新的文献求助10
1秒前
落微完成签到,获得积分10
2秒前
ly完成签到,获得积分10
2秒前
xxcode完成签到,获得积分10
2秒前
机灵夜云发布了新的文献求助20
3秒前
YangMengting发布了新的文献求助10
3秒前
3秒前
4秒前
5秒前
lemon完成签到 ,获得积分10
5秒前
ly发布了新的文献求助10
6秒前
6秒前
JiayingChen完成签到,获得积分10
6秒前
6秒前
7秒前
芙芙发布了新的文献求助10
7秒前
JINGYIII发布了新的文献求助10
7秒前
7秒前
Ava应助暴躁汉堡采纳,获得10
7秒前
Mtoc完成签到,获得积分10
7秒前
LVVVB完成签到,获得积分10
8秒前
Lucas应助violet采纳,获得20
8秒前
亮仔发布了新的文献求助10
8秒前
大菊完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
9秒前
风格和完成签到,获得积分10
9秒前
活着发布了新的文献求助10
9秒前
小璐完成签到,获得积分10
9秒前
gexzygg应助细心的如天采纳,获得10
10秒前
Lucas应助欣慰元蝶采纳,获得10
10秒前
妩媚的海完成签到,获得积分10
10秒前
无名小卒发布了新的文献求助10
10秒前
科研通AI6应助Qovn采纳,获得10
11秒前
wei1390发布了新的文献求助10
11秒前
12345tty发布了新的文献求助30
11秒前
英俊的铭应助JINGYIII采纳,获得30
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5551588
求助须知:如何正确求助?哪些是违规求助? 4636427
关于积分的说明 14644139
捐赠科研通 4578354
什么是DOI,文献DOI怎么找? 2510716
邀请新用户注册赠送积分活动 1486074
关于科研通互助平台的介绍 1457447