Multi-Contrast Complementary Learning for Accelerated MR Imaging

计算机科学 欠采样 人工智能 模态(人机交互) 模式识别(心理学) 迭代重建 对比度(视觉) 融合机制 卷积(计算机科学) 计算机视觉 机器学习 人工神经网络 融合 语言学 哲学 脂质双层融合
作者
Bangjun Li,Weifeng Hu,Chun-Mei Feng,Yujun Li,Zhi Liu,Yong Xu
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (3): 1436-1447 被引量:5
标识
DOI:10.1109/jbhi.2023.3348328
摘要

Thanks to its powerful ability to depict high-resolution anatomical information, magnetic resonance imaging (MRI) has become an essential non-invasive scanning technique in clinical practice. However, excessive acquisition time often leads to the degradation of image quality and psychological discomfort among subjects, hindering its further popularization. Besides reconstructing images from the undersampled protocol itself, multi-contrast MRI protocols bring promising solutions by leveraging additional morphological priors for the target modality. Nevertheless, previous multi-contrast techniques mainly adopt a simple fusion mechanism that inevitably ignores valuable knowledge. In this work, we propose a novel multi-contrast complementary information aggregation network named MCCA, aiming to exploit available complementary representations fully to reconstruct the undersampled modality. Specifically, a multi-scale feature fusion mechanism has been introduced to incorporate complementary-transferable knowledge into the target modality. Moreover, a hybrid convolution transformer block was developed to extract global-local context dependencies simultaneously, which combines the advantages of CNNs while maintaining the merits of Transformers. Compared to existing MRI reconstruction methods, the proposed method has demonstrated its superiority through extensive experiments on different datasets under different acceleration factors and undersampling patterns.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
DDKK发布了新的文献求助50
1秒前
ily.完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
Ava应助胡导家的菜狗采纳,获得10
3秒前
Hi完成签到 ,获得积分10
4秒前
充电宝应助lilianan采纳,获得10
4秒前
lin发布了新的文献求助20
4秒前
美好斓发布了新的文献求助30
5秒前
取昵称好难完成签到,获得积分10
5秒前
why完成签到,获得积分10
5秒前
6秒前
XIAOLI完成签到,获得积分10
6秒前
Fannia发布了新的文献求助10
6秒前
爆米花应助嘻嘻嘻采纳,获得10
6秒前
LY完成签到,获得积分10
6秒前
隐形发布了新的文献求助10
6秒前
JoshuaChen发布了新的文献求助10
7秒前
orixero应助xiaowen采纳,获得10
8秒前
SHAO应助璇22采纳,获得10
8秒前
我不是很帅完成签到,获得积分10
8秒前
sss发布了新的文献求助10
9秒前
9秒前
于是完成签到,获得积分10
10秒前
10秒前
研友_nvGWwZ发布了新的文献求助10
11秒前
1m4完成签到,获得积分10
11秒前
SYLH应助跳跃梦蕊采纳,获得20
11秒前
端庄雨兰完成签到,获得积分20
11秒前
我爱陶子完成签到 ,获得积分10
12秒前
12秒前
liuliu发布了新的文献求助10
12秒前
cc完成签到 ,获得积分20
13秒前
拾柒完成签到,获得积分10
13秒前
13秒前
datang完成签到,获得积分10
13秒前
鱼尾雯完成签到,获得积分10
14秒前
乐乐应助leodu采纳,获得10
15秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986953
求助须知:如何正确求助?哪些是违规求助? 3529326
关于积分的说明 11244328
捐赠科研通 3267695
什么是DOI,文献DOI怎么找? 1803880
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808620