亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Optimisation and interpretation of machine and deep learning models for improved water quality management in Lake Loktak

水质 口译(哲学) 质量(理念) 人工智能 计算机科学 环境科学 机器学习 生态学 认识论 哲学 生物 程序设计语言
作者
Swapan Talukdar,Shahfahad,Somnath Bera,Mohd Waseem Naikoo,G. V. Ramana,Santanu Mallik,Potsangbam Albino Kumar,Atiqur Rahman
出处
期刊:Journal of Environmental Management [Elsevier]
卷期号:351: 119866-119866 被引量:17
标识
DOI:10.1016/j.jenvman.2023.119866
摘要

Loktak Lake, one of the largest freshwater lakes in Manipur, India, is critical for the eco-hydrology and economy of the region, but faces deteriorating water quality due to urbanisation, anthropogenic activities, and domestic sewage. Addressing the urgent need for effective pollution management, this study aims to assess the lake's water quality status using the water quality index (WQI) and develop advanced machine learning (ML) tools for WQI assessment and ML model interpretation to improve pollution management decision making. The WQI was assessed using entropy-based weighting arithmetic and three ML models - Gradient Boosting Machine (GBM), Random Forest (RF) and Deep Neural Network (DNN) - were optimised using a grid search algorithm in the H2O Application Programming Interface (API). These models were validated by various metrics and interpreted globally and locally via Partial Dependency Plot (PDP), Accumulated Local Effect (ALE) and SHapley Additive exPlanations (SHAP). The results show a WQI range of 72.38-100, with 52.7% of samples categorised as very poor. The RF model outperformed GBM and DNN and showed the highest accuracy and generalisation ability, which is reflected in the superior R2 values (0.97 in training, 0.9 in test) and the lower root mean square error (RMSE). RF's minimal margin of error and reliable feature interpretation contrasted with DNN's larger margin of error and inconsistency, which affected its usefulness for decision making. Turbidity was found to be a critical predictive feature in all models, significantly influencing WQI, with other variables such as pH and temperature also playing an important role. SHAP dependency plots illustrated the direct relationship between key water quality parameters such as turbidity and WQI predictions. The novelty of this study lies in its comprehensive approach to the evaluation and interpretation of ML models for WQI estimation, which provides a nuanced understanding of water quality dynamics in Loktak Lake. By identifying the most effective ML models and key predictive functions, this study provides invaluable insights for water quality management and paves the way for targeted strategies to monitor and improve water quality in this vital freshwater ecosystem.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助羽宇采纳,获得10
9秒前
情怀应助zhang采纳,获得10
49秒前
安一发布了新的文献求助20
1分钟前
1分钟前
荔枝发布了新的文献求助10
1分钟前
1分钟前
1分钟前
明亮剑完成签到,获得积分10
1分钟前
明亮剑发布了新的文献求助10
1分钟前
1分钟前
556发布了新的文献求助30
1分钟前
1分钟前
在水一方完成签到 ,获得积分0
1分钟前
万里发布了新的文献求助10
1分钟前
1分钟前
zhang发布了新的文献求助10
1分钟前
鲁成危完成签到,获得积分10
1分钟前
李爱国应助安一采纳,获得10
2分钟前
2分钟前
羽宇完成签到,获得积分10
2分钟前
羽宇发布了新的文献求助10
2分钟前
传奇3应助丰富的饼干采纳,获得30
2分钟前
2分钟前
万里发布了新的文献求助10
2分钟前
2分钟前
3分钟前
尘默发布了新的文献求助10
3分钟前
荔枝发布了新的文献求助10
3分钟前
爆米花应助zhang采纳,获得10
3分钟前
3分钟前
556完成签到 ,获得积分10
3分钟前
3分钟前
CipherSage应助科研通管家采纳,获得30
3分钟前
安一发布了新的文献求助10
3分钟前
坚定的又莲完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
2024120310发布了新的文献求助10
3分钟前
unfeeling8发布了新的文献求助10
3分钟前
Willow完成签到,获得积分10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
The Dance of Butch/Femme: The Complementarity and Autonomy of Lesbian Gender Identity 500
Driving under the influence: Epidemiology, etiology, prevention, policy, and treatment 500
Differentiation Between Social Groups: Studies in the Social Psychology of Intergroup Relations 350
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5875718
求助须知:如何正确求助?哪些是违规求助? 6520503
关于积分的说明 15677571
捐赠科研通 4993782
什么是DOI,文献DOI怎么找? 2691626
邀请新用户注册赠送积分活动 1633847
关于科研通互助平台的介绍 1591492