Metabolomics profile and machine learning prediction of treatment responses in immune thrombocytopenia: A prospective cohort study

前瞻性队列研究 医学 免疫系统 代谢途径 鞘脂 免疫学 骨髓 代谢组学 内科学 新陈代谢 生物化学 血小板 生物信息学 生物
作者
Yang Li,Ting Sun,Jia Chen,Xiaofan Liu,Rongfeng Fu,Feng Xue,Wei Liu,Mankai Ju,Xinyue Dai,Huiyuan Li,Wentian Wang,Ying Chi,Ting Li,Shuai Shao,Renchi Yang,Yunfei Chen,Lei Zhang
出处
期刊:British Journal of Haematology [Wiley]
卷期号:204 (6): 2405-2417 被引量:4
标识
DOI:10.1111/bjh.19391
摘要

Immune thrombocytopenia (ITP) is an autoimmune disease characterized by antibody-mediated platelet destruction and impaired platelet production. The mechanisms underlying ITP and biomarkers predicting the response of drug treatments are elusive. We performed a metabolomic profiling of bone marrow biopsy samples collected from ITP patients admission in a prospective study of the National Longitudinal Cohort of Hematological Diseases. Machine learning algorithms were conducted to discover novel biomarkers to predict ITP patient treatment responses. From the bone marrow biopsies of 91 ITP patients, we quantified a total of 4494 metabolites, including 1456 metabolites in the positive mode and 3038 metabolites in the negative mode. Metabolic patterns varied significantly between groups of newly diagnosed and chronic ITP, with a total of 876 differential metabolites involved in 181 unique metabolic pathways. Enrichment factors and p-values revealed the top metabolically enriched pathways to be sphingolipid metabolism, the sphingolipid signalling pathway, ubiquinone and other terpenoid-quinone biosynthesis, thiamine metabolism, tryptophan metabolism and cofactors biosynthesis, the phospholipase D signalling pathway and the phosphatidylinositol signalling system. Based on patient responses to five treatment options, we screened several metabolites using the Boruta algorithm and ranked their importance using the random forest algorithm. Lipids and their metabolism, including long-chain fatty acids, oxidized lipids, glycerophospholipids, phosphatidylcholine and phosphatidylethanolamine biosynthesis, helped differentiate drug treatment responses. In conclusion, this study revealed metabolic alterations associated with ITP in bone marrow supernatants and a potential biomarker predicting the response to ITP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风登楼完成签到,获得积分10
刚刚
科研通AI5应助自信念云采纳,获得30
刚刚
1秒前
1秒前
11122333发布了新的文献求助30
1秒前
yuanyuanzhao发布了新的文献求助10
1秒前
sam发布了新的文献求助10
2秒前
3秒前
善学以致用应助阿洁采纳,获得10
4秒前
陈nn发布了新的文献求助10
4秒前
4秒前
4秒前
science发布了新的文献求助10
6秒前
湖湖发布了新的文献求助10
6秒前
sclorry发布了新的文献求助10
6秒前
Jasper应助hyominhsu采纳,获得10
6秒前
商毛毛完成签到,获得积分10
6秒前
7秒前
云云云完成签到,获得积分10
8秒前
费1发布了新的文献求助10
9秒前
共享精神应助笑开口采纳,获得10
9秒前
10秒前
yjwang完成签到,获得积分10
10秒前
11秒前
xiaoshuai应助儒雅的若剑采纳,获得10
11秒前
11秒前
11秒前
sam完成签到,获得积分10
12秒前
行走人生发布了新的文献求助10
12秒前
12秒前
计划完成签到,获得积分10
13秒前
14秒前
小太阳发布了新的文献求助10
15秒前
16秒前
阿洁发布了新的文献求助10
16秒前
可爱的函函应助ljq采纳,获得10
16秒前
赘婿应助杨天天采纳,获得10
16秒前
HCCha发布了新的文献求助10
16秒前
朱佳宁完成签到 ,获得积分10
17秒前
落寞怜雪发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
Architectural Corrosion and Critical Infrastructure 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4886200
求助须知:如何正确求助?哪些是违规求助? 4171169
关于积分的说明 12943805
捐赠科研通 3931690
什么是DOI,文献DOI怎么找? 2157185
邀请新用户注册赠送积分活动 1175580
关于科研通互助平台的介绍 1080137