Metabolomics profile and machine learning prediction of treatment responses in immune thrombocytopenia: A prospective cohort study

前瞻性队列研究 医学 免疫系统 代谢途径 鞘脂 免疫学 骨髓 代谢组学 内科学 新陈代谢 生物化学 血小板 生物信息学 生物
作者
Yang Li,Ting Sun,Jia Chen,Xiaofan Liu,Rongfeng Fu,Feng Xue,Wei Liu,Mankai Ju,Xinyue Dai,Huiyuan Li,Wentian Wang,Ying Chi,Ting Li,Shuai Shao,Renchi Yang,Yunfei Chen,Lei Zhang
出处
期刊:British Journal of Haematology [Wiley]
卷期号:204 (6): 2405-2417 被引量:4
标识
DOI:10.1111/bjh.19391
摘要

Immune thrombocytopenia (ITP) is an autoimmune disease characterized by antibody-mediated platelet destruction and impaired platelet production. The mechanisms underlying ITP and biomarkers predicting the response of drug treatments are elusive. We performed a metabolomic profiling of bone marrow biopsy samples collected from ITP patients admission in a prospective study of the National Longitudinal Cohort of Hematological Diseases. Machine learning algorithms were conducted to discover novel biomarkers to predict ITP patient treatment responses. From the bone marrow biopsies of 91 ITP patients, we quantified a total of 4494 metabolites, including 1456 metabolites in the positive mode and 3038 metabolites in the negative mode. Metabolic patterns varied significantly between groups of newly diagnosed and chronic ITP, with a total of 876 differential metabolites involved in 181 unique metabolic pathways. Enrichment factors and p-values revealed the top metabolically enriched pathways to be sphingolipid metabolism, the sphingolipid signalling pathway, ubiquinone and other terpenoid-quinone biosynthesis, thiamine metabolism, tryptophan metabolism and cofactors biosynthesis, the phospholipase D signalling pathway and the phosphatidylinositol signalling system. Based on patient responses to five treatment options, we screened several metabolites using the Boruta algorithm and ranked their importance using the random forest algorithm. Lipids and their metabolism, including long-chain fatty acids, oxidized lipids, glycerophospholipids, phosphatidylcholine and phosphatidylethanolamine biosynthesis, helped differentiate drug treatment responses. In conclusion, this study revealed metabolic alterations associated with ITP in bone marrow supernatants and a potential biomarker predicting the response to ITP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
海盐气泡水完成签到,获得积分10
1秒前
Fine发布了新的文献求助10
2秒前
2秒前
2秒前
mmyhn发布了新的文献求助50
2秒前
3秒前
黄垚完成签到,获得积分10
4秒前
5秒前
crystal发布了新的文献求助10
7秒前
久等雨归发布了新的文献求助10
8秒前
8秒前
aerfas发布了新的文献求助10
8秒前
小号完成签到,获得积分10
8秒前
xiaoxiao完成签到 ,获得积分10
8秒前
清yu发布了新的文献求助10
9秒前
wtian完成签到,获得积分10
9秒前
彭于晏应助xixi采纳,获得10
10秒前
11秒前
11秒前
量子星尘发布了新的文献求助10
13秒前
余呀余完成签到 ,获得积分10
13秒前
王辣辣完成签到,获得积分10
13秒前
li完成签到,获得积分10
14秒前
14秒前
徐木木完成签到,获得积分10
16秒前
量子星尘发布了新的文献求助10
16秒前
Joceelyn完成签到,获得积分10
16秒前
chengyu应助小小琳采纳,获得10
16秒前
酷波er应助hvgjgfjhgjh采纳,获得10
17秒前
dd完成签到,获得积分10
18秒前
20秒前
ding应助一一采纳,获得10
20秒前
sarah发布了新的文献求助30
20秒前
默认账号完成签到 ,获得积分10
21秒前
22秒前
科研狗发布了新的文献求助10
23秒前
向日葵完成签到,获得积分10
24秒前
量子星尘发布了新的文献求助10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5708988
求助须知:如何正确求助?哪些是违规求助? 5191995
关于积分的说明 15255588
捐赠科研通 4861880
什么是DOI,文献DOI怎么找? 2609733
邀请新用户注册赠送积分活动 1560175
关于科研通互助平台的介绍 1517941