Metabolomics profile and machine learning prediction of treatment responses in immune thrombocytopenia: A prospective cohort study

前瞻性队列研究 医学 免疫系统 代谢途径 鞘脂 免疫学 骨髓 代谢组学 内科学 新陈代谢 生物化学 血小板 生物信息学 生物
作者
Yang Li,Ting Sun,Jia Chen,Xiaofan Liu,Rongfeng Fu,Feng Xue,Wei Liu,Mankai Ju,Xinyue Dai,Huiyuan Li,Wentian Wang,Ying Chi,Ting Li,Shuai Shao,Renchi Yang,Yunfei Chen,Lei Zhang
出处
期刊:British Journal of Haematology [Wiley]
卷期号:204 (6): 2405-2417 被引量:2
标识
DOI:10.1111/bjh.19391
摘要

Immune thrombocytopenia (ITP) is an autoimmune disease characterized by antibody-mediated platelet destruction and impaired platelet production. The mechanisms underlying ITP and biomarkers predicting the response of drug treatments are elusive. We performed a metabolomic profiling of bone marrow biopsy samples collected from ITP patients admission in a prospective study of the National Longitudinal Cohort of Hematological Diseases. Machine learning algorithms were conducted to discover novel biomarkers to predict ITP patient treatment responses. From the bone marrow biopsies of 91 ITP patients, we quantified a total of 4494 metabolites, including 1456 metabolites in the positive mode and 3038 metabolites in the negative mode. Metabolic patterns varied significantly between groups of newly diagnosed and chronic ITP, with a total of 876 differential metabolites involved in 181 unique metabolic pathways. Enrichment factors and p-values revealed the top metabolically enriched pathways to be sphingolipid metabolism, the sphingolipid signalling pathway, ubiquinone and other terpenoid-quinone biosynthesis, thiamine metabolism, tryptophan metabolism and cofactors biosynthesis, the phospholipase D signalling pathway and the phosphatidylinositol signalling system. Based on patient responses to five treatment options, we screened several metabolites using the Boruta algorithm and ranked their importance using the random forest algorithm. Lipids and their metabolism, including long-chain fatty acids, oxidized lipids, glycerophospholipids, phosphatidylcholine and phosphatidylethanolamine biosynthesis, helped differentiate drug treatment responses. In conclusion, this study revealed metabolic alterations associated with ITP in bone marrow supernatants and a potential biomarker predicting the response to ITP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
心有猛虎完成签到,获得积分10
1秒前
完犊子完成签到,获得积分20
1秒前
Kiry完成签到 ,获得积分10
2秒前
1111完成签到 ,获得积分10
3秒前
Ling完成签到,获得积分10
3秒前
令狐剑通完成签到,获得积分10
4秒前
汝坤完成签到 ,获得积分10
5秒前
所所应助完犊子采纳,获得10
5秒前
闾丘惜寒完成签到,获得积分10
5秒前
叶落无痕、完成签到,获得积分10
6秒前
xiaobao完成签到,获得积分10
7秒前
7秒前
Nathan完成签到,获得积分10
7秒前
lmq完成签到 ,获得积分10
9秒前
firewood完成签到,获得积分10
9秒前
清风完成签到 ,获得积分10
9秒前
Amber完成签到 ,获得积分10
9秒前
哎呀呀完成签到,获得积分10
9秒前
愉悦完成签到,获得积分10
10秒前
滴答dddd完成签到,获得积分10
11秒前
monkey1976完成签到,获得积分10
11秒前
山野桃饼完成签到,获得积分10
11秒前
Lensin完成签到 ,获得积分10
11秒前
11秒前
鱼女士完成签到,获得积分10
12秒前
龙舞星完成签到,获得积分10
14秒前
禹hs完成签到 ,获得积分10
15秒前
20250702完成签到 ,获得积分10
15秒前
张西西完成签到 ,获得积分10
15秒前
云下完成签到 ,获得积分20
16秒前
饱满语风完成签到 ,获得积分10
16秒前
韦一手发布了新的文献求助30
16秒前
海王類完成签到,获得积分10
18秒前
123完成签到 ,获得积分10
20秒前
丹青完成签到,获得积分10
20秒前
ke科研小白完成签到,获得积分10
24秒前
君君完成签到,获得积分10
25秒前
韦一手完成签到,获得积分10
25秒前
lili完成签到 ,获得积分10
28秒前
bhvgbvnhvnh完成签到,获得积分10
29秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3957165
求助须知:如何正确求助?哪些是违规求助? 3503210
关于积分的说明 11111542
捐赠科研通 3234291
什么是DOI,文献DOI怎么找? 1787853
邀请新用户注册赠送积分活动 870789
科研通“疑难数据库(出版商)”最低求助积分说明 802330