Bottom-preferred stripping mechanism towards quantified inactive metallic Zn0-dominant zinc loss in rechargeable zinc metal battery

材料科学 金属 电池(电) 化学工程 剥离(纤维) 无机化学 化学 冶金 复合材料 功率(物理) 物理 量子力学 工程类
作者
Yaoyao Liu,Feng Zhang,Z. H. Wang,Limei Deng,L. Dong,Kepeng Song,Shuhua Wang,Hong Liu,Hao Chen
出处
期刊:Energy Storage Materials [Elsevier]
卷期号:65: 103180-103180
标识
DOI:10.1016/j.ensm.2024.103180
摘要

Electrically isolated metallic Zn (Zn0) and electrochemically side reaction (ECSR), causes irreversible anode capacity loss and limited cycle life in zinc metal battery. However, the quantitative distinguishment between inactive metallic Zn0 and ECSR, their formation mechanism and correlation with anode cycling reversibility have never been disclosed, limiting further anode modification design. Here, we develop an acid-assisted continuous titration-collection-gas chromatography technique (AAC-TCGC) that accurately quantify the amount of inactive Zn0 and ECSR in anode, and discover that inactive Zn0 accounts for the majority of Zn loss, rather than the commonly-assumed electrochemically side reaction-derived ECSR-dominant Zn anode capacity loss. Detailed component of SEI (Solid Electrolyte Interface Layer) compound is also characterized, illustrating a solvent-derived zinc oxide/hydroxide-dominant SEI that facilitates vertical/inclined thin-plate Zn deposition, but salt-derived ZnF2-dominant SEI that favors horizontal platelet-shaped Zn(002) deposition. Simulation results reveal a new electric resistance-derived, bottom-preferred Zn stripping mechanism that leads to abundant inactive Zn0 formation in vertical thin-plate Zn deposition structure, but few inactive Zn0 in dumpy platelet-shaped Zn structure. Our study provides new theories and strategies on the distinguishment, formation mechanism and structure-performance relationship of inactive Zn, important for building more efficient Zn metal battery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
2秒前
cj发布了新的文献求助10
3秒前
4秒前
4秒前
眉姐姐的藕粉桂花糖糕完成签到 ,获得积分10
5秒前
xuanxuan完成签到,获得积分20
6秒前
6秒前
6秒前
6秒前
7秒前
薰硝壤应助pazhao采纳,获得100
7秒前
yanting完成签到,获得积分10
7秒前
8秒前
8秒前
8秒前
9秒前
9秒前
10秒前
Acer完成签到 ,获得积分10
11秒前
llbeyond应助科研通管家采纳,获得20
11秒前
JamesPei应助科研通管家采纳,获得10
11秒前
桐桐应助科研通管家采纳,获得10
11秒前
852应助科研通管家采纳,获得10
11秒前
酷波er应助科研通管家采纳,获得10
11秒前
丘比特应助科研通管家采纳,获得10
11秒前
小二郎应助科研通管家采纳,获得10
11秒前
NexusExplorer应助科研通管家采纳,获得10
12秒前
云瑾应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
小蘑菇应助TM采纳,获得10
15秒前
15秒前
Owen应助hongtou采纳,获得10
16秒前
自由沧海发布了新的文献求助10
16秒前
17秒前
一叶扁舟完成签到,获得积分10
17秒前
19秒前
高分求助中
Evolution 2024
Impact of Mitophagy-Related Genes on the Diagnosis and Development of Esophageal Squamous Cell Carcinoma via Single-Cell RNA-seq Analysis and Machine Learning Algorithms 2000
How to Create Beauty: De Lairesse on the Theory and Practice of Making Art 1000
Gerard de Lairesse : an artist between stage and studio 670
大平正芳: 「戦後保守」とは何か 550
Contributo alla conoscenza del bifenile e dei suoi derivati. Nota XV. Passaggio dal sistema bifenilico a quello fluorenico 500
Multiscale Thermo-Hydro-Mechanics of Frozen Soil: Numerical Frameworks and Constitutive Models 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 2996607
求助须知:如何正确求助?哪些是违规求助? 2657010
关于积分的说明 7191607
捐赠科研通 2292494
什么是DOI,文献DOI怎么找? 1215350
科研通“疑难数据库(出版商)”最低求助积分说明 593153
版权声明 592795