亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Comparative analysis of machine learning models in predicting housing prices: a case study of Prishtina's real estate market

房地产 独创性 计算机科学 普通最小二乘法 支持向量机 计量经济学 回归分析 决策树 背景(考古学) 线性回归 误差修正模型 标准化 均方误差 统计 机器学习 数学 经济 财务 地理 考古 协整 创造力 政治学 法学 操作系统
作者
Visar Hoxha
出处
期刊:International Journal of Housing Markets and Analysis [Emerald (MCB UP)]
被引量:1
标识
DOI:10.1108/ijhma-09-2023-0120
摘要

Purpose The purpose of this study is to carry out a comparative analysis of four machine learning models such as linear regression, decision trees, k-nearest neighbors and support vector regression in predicting housing prices in Prishtina. Design/methodology/approach Using Python, the models were assessed on a data set of 1,512 property transactions with mean squared error, coefficient of determination, mean absolute error and root mean squared error as metrics. The study also conducts variable importance test. Findings Upon preprocessing and standardization of the data, the models were trained and tested, with the decision tree model producing the best performance. The variable importance test found the distance from central business district and distance to the road leading to central business district as the most relevant drivers of housing prices across all models, with the exception of support vector machine model, which showed minimal importance for all variables. Originality/value To the best of the author’s knowledge, the originality of this research rests in its methodological approach and emphasis on Prishtina's real estate market, which has never been studied in this context, and its findings may be generalizable to comparable transitional economies with booming real estate sector like Kosovo.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
早川完成签到,获得积分10
19秒前
19秒前
科研通AI2S应助魏欣娜采纳,获得10
21秒前
可爱的函函应助早川采纳,获得10
27秒前
馍夹菜完成签到,获得积分10
27秒前
31秒前
45秒前
Vivian发布了新的文献求助30
50秒前
Fox完成签到,获得积分10
55秒前
科研通AI2S应助魏欣娜采纳,获得10
58秒前
58秒前
维颖完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
zhvjdb发布了新的文献求助10
1分钟前
Raju发布了新的文献求助100
1分钟前
英姑应助lpy李采纳,获得10
1分钟前
1分钟前
zhvjdb完成签到,获得积分10
1分钟前
Yuuw发布了新的文献求助10
1分钟前
bastien驳回了xxfsx应助
1分钟前
1分钟前
1分钟前
Huzhu应助魏欣娜采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得30
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
华仔应助科研通管家采纳,获得10
1分钟前
Yuuw完成签到,获得积分10
1分钟前
1分钟前
Sherry发布了新的文献求助20
1分钟前
充电宝应助青柠采纳,获得10
1分钟前
科研通AI2S应助魏欣娜采纳,获得10
2分钟前
2分钟前
2分钟前
33发布了新的文献求助10
2分钟前
2分钟前
田様应助yydcmnyxx采纳,获得30
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482307
求助须知:如何正确求助?哪些是违规求助? 4583190
关于积分的说明 14388883
捐赠科研通 4512205
什么是DOI,文献DOI怎么找? 2472753
邀请新用户注册赠送积分活动 1459020
关于科研通互助平台的介绍 1432430