Comparative analysis of machine learning models in predicting housing prices: a case study of Prishtina's real estate market

房地产 独创性 计算机科学 普通最小二乘法 支持向量机 计量经济学 回归分析 决策树 背景(考古学) 线性回归 误差修正模型 标准化 均方误差 统计 机器学习 数学 经济 财务 地理 考古 协整 创造力 政治学 法学 操作系统
作者
Visar Hoxha
出处
期刊:International Journal of Housing Markets and Analysis [Emerald (MCB UP)]
被引量:1
标识
DOI:10.1108/ijhma-09-2023-0120
摘要

Purpose The purpose of this study is to carry out a comparative analysis of four machine learning models such as linear regression, decision trees, k-nearest neighbors and support vector regression in predicting housing prices in Prishtina. Design/methodology/approach Using Python, the models were assessed on a data set of 1,512 property transactions with mean squared error, coefficient of determination, mean absolute error and root mean squared error as metrics. The study also conducts variable importance test. Findings Upon preprocessing and standardization of the data, the models were trained and tested, with the decision tree model producing the best performance. The variable importance test found the distance from central business district and distance to the road leading to central business district as the most relevant drivers of housing prices across all models, with the exception of support vector machine model, which showed minimal importance for all variables. Originality/value To the best of the author’s knowledge, the originality of this research rests in its methodological approach and emphasis on Prishtina's real estate market, which has never been studied in this context, and its findings may be generalizable to comparable transitional economies with booming real estate sector like Kosovo.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_LOoomL发布了新的文献求助10
刚刚
1秒前
1秒前
1秒前
土豆发布了新的文献求助10
2秒前
麦饭发布了新的文献求助10
4秒前
luwenxuan完成签到,获得积分10
4秒前
大观天下发布了新的文献求助10
4秒前
5秒前
yomi发布了新的文献求助10
5秒前
JamesPei应助快乐的蓝采纳,获得10
5秒前
5秒前
6秒前
6秒前
海带先生发布了新的文献求助10
6秒前
FashionBoy应助melodyezi采纳,获得10
6秒前
8秒前
过于傻逼完成签到,获得积分10
9秒前
10秒前
余鱼鱼完成签到,获得积分10
11秒前
SciGPT应助研友_LOoomL采纳,获得10
12秒前
16秒前
16秒前
16秒前
共享精神应助十七画采纳,获得10
21秒前
dawnfrf应助SKD采纳,获得30
21秒前
ym完成签到 ,获得积分10
21秒前
快乐的蓝发布了新的文献求助10
22秒前
Charon发布了新的文献求助10
22秒前
Masaccy发布了新的文献求助10
24秒前
丘比特应助蔓越莓蛋糕采纳,获得10
24秒前
晓阳完成签到,获得积分10
25秒前
海带先生完成签到,获得积分10
25秒前
25秒前
竹林听雨zxs完成签到 ,获得积分10
25秒前
Quanquan完成签到 ,获得积分10
31秒前
神勇葵阴完成签到,获得积分20
32秒前
专注雁桃完成签到 ,获得积分10
33秒前
dawnfrf应助聪慧的致远采纳,获得20
34秒前
34秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
Data Structures and Algorithms in Java 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3268281
求助须知:如何正确求助?哪些是违规求助? 2907854
关于积分的说明 8343465
捐赠科研通 2578165
什么是DOI,文献DOI怎么找? 1401736
科研通“疑难数据库(出版商)”最低求助积分说明 655174
邀请新用户注册赠送积分活动 634291