光热治疗
材料科学
硫族元素
近红外光谱
生物相容性
吸收(声学)
辐照
纳米技术
光电子学
光学
化学
有机化学
物理
核物理学
冶金
复合材料
作者
Xiao Dong Chen,Xiaopeng Ma,Gui Yang,Guan Huang,Haibing Dai,Jianbo Yu,Nian Liu
标识
DOI:10.1021/acsami.4c02254
摘要
Organic dye-based agents with near-infrared (NIR)-II absorption have great potential for cancer theranostics because of the deeper tissue penetration and good biocompatibility. However, proper design is required to develop NIR-II-absorbing dyes with good optical properties. We proposed to construct chalcogen atom-modulated croconaine for NIR-II light-triggered photothermal theranostics. By introducing different chalcogen atoms (O, S, Se, or Te) into the structure of croconaine, the light absorption of croconaine can be precisely regulated from the NIR-I to the NIR-II range due to the heavy-atom effect. Especially, Te-substituted croconaine (CRTe) and its nanoformulations exhibit superior NIR-II responsiveness, a high photothermal conversion efficiency (70.6%), and good photostability. With their favorable tumor accumulation, CRTe-NPs from tumor regions can be visualized by NIR-II optoacoustic systems with high resolution and high contrast; meanwhile, their superior photothermal performance also contributes to efficient cell killing and tumor elimination upon 1064 nm laser irradiation. Therefore, this work provides an efficient strategy for the molecular design of NIR-II organic photothermal agents.
科研通智能强力驱动
Strongly Powered by AbleSci AI