A novel framework for lung cancer classification using lightweight convolutional neural networks and ridge extreme learning machine model with SHapley Additive exPlanations (SHAP)

计算机科学 卷积神经网络 山脊 人工智能 机器学习 地质学 古生物学
作者
Md. Nahiduzzaman,Lway Faisal Abdulrazak,Mohamed Arselene Ayari,Amith Khandakar,S. M. Riazul Islam
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:248: 123392-123392
标识
DOI:10.1016/j.eswa.2024.123392
摘要

This paper presents a novel approach that merges a lightweight parallel depth-wise separable convolutional neural network (LPDCNN) with a ridge regression extreme learning machine (Ridge-ELM) for precise classification of three lung cancer types alongside normal lung tissue (adenocarcinoma, large cell carcinoma, normal, and squamous cell carcinoma) using CT images. The proposed methodology combines contrast-limited adaptive histogram equalization (CLAHE) and Gaussian blur to enhance image quality, reduce noise, and improve visual clarity. The LPDCNN extracts discriminant features while minimizing computational complexity (0.53 million parameters and 9 layers). The Ridge-ELM model was developed to enhance classification performance, replacing the traditional pseudoinverse in the ELM approach. Through comprehensive evaluation against state-of-the-art models, the framework achieves remarkable average recall and accuracy values of 98.25 ± 1.031 % and 98.40 ± 0.822 %, respectively, through rigorous five-fold cross-validation for four-class classifications. In binary classifications, outstanding results are obtained with recall and accuracy values of 99.70 ± 0.671 % and 99.70 ± 0.447 %%, respectively. Notably, the framework exhibits exceptional efficiency, with a testing time of only 0.003 s. Additionally, integrating the SHAP (Shapley Additive Explanations) in the proposed framework enhances Explain-ability, providing insights into decision-making and boosting confidence in real-world lung cancer diagnoses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
夏大雨发布了新的文献求助30
1秒前
klb13应助科研通管家采纳,获得10
3秒前
香蕉觅云应助科研通管家采纳,获得10
3秒前
丰知然应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
丰知然应助科研通管家采纳,获得10
3秒前
丰知然应助科研通管家采纳,获得10
3秒前
彭于彦祖应助科研通管家采纳,获得30
3秒前
赘婿应助科研通管家采纳,获得10
3秒前
丰知然应助科研通管家采纳,获得10
3秒前
ding应助科研通管家采纳,获得10
3秒前
烟花应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
烟花应助科研通管家采纳,获得10
4秒前
赘婿应助科研通管家采纳,获得10
4秒前
mylaodao完成签到,获得积分0
4秒前
6秒前
Lucas应助334niubi666采纳,获得10
7秒前
w_yF发布了新的文献求助10
8秒前
8秒前
BareBear应助YuF采纳,获得10
9秒前
李健应助阳佟之槐采纳,获得10
9秒前
酷炫小笼包完成签到,获得积分10
10秒前
丿小智灬完成签到,获得积分10
10秒前
cc发布了新的文献求助10
12秒前
13秒前
想吃芝士荔枝烤鱼完成签到,获得积分10
14秒前
14秒前
18秒前
18秒前
334niubi666发布了新的文献求助10
19秒前
葛二蛋完成签到,获得积分10
19秒前
在水一方应助科研小辣椒2采纳,获得10
20秒前
cqr完成签到 ,获得积分10
23秒前
rosalieshi应助眯眯眼的代容采纳,获得30
24秒前
深情安青应助阳佟之槐采纳,获得10
24秒前
心酒为友完成签到 ,获得积分20
25秒前
25秒前
自然的傲松完成签到,获得积分20
29秒前
婷婷发布了新的文献求助10
29秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3308460
求助须知:如何正确求助?哪些是违规求助? 2941800
关于积分的说明 8505877
捐赠科研通 2616792
什么是DOI,文献DOI怎么找? 1429755
科研通“疑难数据库(出版商)”最低求助积分说明 663888
邀请新用户注册赠送积分活动 648999