Urban waterlogging susceptibility assessment based on hybrid ensemble machine learning models: A case study in the metropolitan area in Beijing, China

北京 内涝(考古学) 大都市区 中国 随机森林 机器学习 环境科学 逻辑回归 计算机科学 集成学习 人工智能 地理 考古 生态学 湿地 生物
作者
Mingqi Yan,Jiarui Yang,Xiaoyong Ni,Kai Liu,Yijia Wang,Fang Xu
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:630: 130695-130695 被引量:22
标识
DOI:10.1016/j.jhydrol.2024.130695
摘要

Urban waterlogging has emerged as a significant problem worldwide, particularly in densely populated cities. Accurate assessment of waterlogging susceptibility at the city scale is crucial for mitigating the risks associated with waterlogging and optimizing municipal design accordingly. However, existing studies on urban waterlogging susceptibility assessment have primarily relied on individual machine learning models. It is worthwhile to explore whether hybrid ensemble models have the potential to enhance the predictive performance. This research presents two hybrid ensemble machine learning models, namely Stacking and Blending, for assessing urban waterlogging susceptibility in the metropolitan area of Beijing, China. The performances of these models are compared with those of the widely used individual machine learning models. Evaluation of all the models is based on metrics such as Accuracy rate and Area Under Curve (AUC) score. The results demonstrate that the Stacking and Blending models consistently outperform the traditional machine learning models, such as Random Forest, Logistic Regression, etc. Through susceptibility analysis and model interpretation with SHAP method, this paper obtains several key findings that low lying areas may not necessarily be areas with severe waterlogging; urban roads and densely populated areas are highly susceptible to becoming high-risk areas for waterlogging in the study area. This study not only highlights the effectiveness of the Stacking and Blending models for urban waterlogging susceptibility assessment but also provides valuable insights for waterlogging mitigation strategies in urban planning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
zzz完成签到,获得积分10
1秒前
曾经的白猫完成签到,获得积分20
1秒前
晴晴完成签到,获得积分10
2秒前
上官若男应助QQ采纳,获得10
2秒前
共享精神应助小勇仔采纳,获得10
2秒前
tao完成签到,获得积分10
2秒前
3秒前
Lee发布了新的文献求助10
3秒前
liujiahao完成签到,获得积分10
3秒前
3秒前
大力出奇迹完成签到,获得积分10
4秒前
勤奋天真完成签到 ,获得积分10
4秒前
4秒前
Qinzhiyuan1990完成签到 ,获得积分10
4秒前
铱凡完成签到,获得积分10
5秒前
weeqe完成签到,获得积分10
5秒前
玄机发布了新的文献求助10
5秒前
WATQ完成签到,获得积分10
6秒前
Yangfan发布了新的文献求助10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
Mende发布了新的文献求助10
6秒前
上官若男应助科研通管家采纳,获得10
6秒前
隐形曼青应助科研通管家采纳,获得30
6秒前
6秒前
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
追寻月饼完成签到,获得积分10
6秒前
lw不好找完成签到 ,获得积分10
6秒前
6秒前
7秒前
老迟到的芹菜完成签到,获得积分10
7秒前
赛特新思完成签到,获得积分10
7秒前
小二郎应助mumian采纳,获得10
7秒前
雪时晴完成签到,获得积分10
7秒前
8秒前
1177完成签到,获得积分10
8秒前
拾柒发布了新的文献求助10
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573946
求助须知:如何正确求助?哪些是违规求助? 4660289
关于积分的说明 14728668
捐赠科研通 4600067
什么是DOI,文献DOI怎么找? 2524676
邀请新用户注册赠送积分活动 1495011
关于科研通互助平台的介绍 1465006