Urban waterlogging susceptibility assessment based on hybrid ensemble machine learning models: A case study in the metropolitan area in Beijing, China

北京 内涝(考古学) 大都市区 中国 随机森林 机器学习 环境科学 逻辑回归 计算机科学 集成学习 人工智能 地理 考古 生态学 湿地 生物
作者
Mingqi Yan,Jiarui Yang,Xiaoyong Ni,Kai Liu,Yijia Wang,Fang Xu
出处
期刊:Journal of Hydrology [Elsevier BV]
卷期号:630: 130695-130695 被引量:15
标识
DOI:10.1016/j.jhydrol.2024.130695
摘要

Urban waterlogging has emerged as a significant problem worldwide, particularly in densely populated cities. Accurate assessment of waterlogging susceptibility at the city scale is crucial for mitigating the risks associated with waterlogging and optimizing municipal design accordingly. However, existing studies on urban waterlogging susceptibility assessment have primarily relied on individual machine learning models. It is worthwhile to explore whether hybrid ensemble models have the potential to enhance the predictive performance. This research presents two hybrid ensemble machine learning models, namely Stacking and Blending, for assessing urban waterlogging susceptibility in the metropolitan area of Beijing, China. The performances of these models are compared with those of the widely used individual machine learning models. Evaluation of all the models is based on metrics such as Accuracy rate and Area Under Curve (AUC) score. The results demonstrate that the Stacking and Blending models consistently outperform the traditional machine learning models, such as Random Forest, Logistic Regression, etc. Through susceptibility analysis and model interpretation with SHAP method, this paper obtains several key findings that low lying areas may not necessarily be areas with severe waterlogging; urban roads and densely populated areas are highly susceptible to becoming high-risk areas for waterlogging in the study area. This study not only highlights the effectiveness of the Stacking and Blending models for urban waterlogging susceptibility assessment but also provides valuable insights for waterlogging mitigation strategies in urban planning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Aba关闭了Aba文献求助
1秒前
轻松的兔子完成签到,获得积分10
1秒前
丘比特应助大气的黑夜采纳,获得10
2秒前
搜集达人应助xxxx_w采纳,获得10
2秒前
wsz发布了新的文献求助10
2秒前
wood完成签到,获得积分10
2秒前
3秒前
哈哈哈哈哈哈完成签到,获得积分10
3秒前
4秒前
4秒前
ding应助眯眯眼的老五采纳,获得10
4秒前
Akim应助momo采纳,获得10
5秒前
5秒前
6秒前
汉堡包应助书雪采纳,获得10
6秒前
BAEKHYUNLUCKY发布了新的文献求助10
6秒前
故笺完成签到,获得积分10
6秒前
科研通AI6应助飞飞采纳,获得10
7秒前
8秒前
Georges-09发布了新的文献求助10
8秒前
微笑柜子关注了科研通微信公众号
8秒前
烟花应助典雅的俊驰采纳,获得10
9秒前
朴素的月光完成签到,获得积分10
9秒前
小豆发布了新的文献求助10
10秒前
陈新完成签到,获得积分10
10秒前
酷波er应助浮浮世世采纳,获得10
10秒前
小书包完成签到,获得积分10
10秒前
故笺发布了新的文献求助10
11秒前
11秒前
科研通AI6应助大方的凌波采纳,获得10
11秒前
Sisyphus完成签到,获得积分10
12秒前
MIAAAO完成签到,获得积分10
12秒前
小蛇玩发布了新的文献求助10
12秒前
科研人发布了新的文献求助10
12秒前
科研通AI2S应助zsy采纳,获得10
12秒前
科研通AI6应助进步采纳,获得10
13秒前
14秒前
科研通AI2S应助zifeimo采纳,获得10
14秒前
满满完成签到 ,获得积分10
15秒前
15秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603996
求助须知:如何正确求助?哪些是违规求助? 4012488
关于积分的说明 12423933
捐赠科研通 3693069
什么是DOI,文献DOI怎么找? 2036050
邀请新用户注册赠送积分活动 1069178
科研通“疑难数据库(出版商)”最低求助积分说明 953646