Urban waterlogging susceptibility assessment based on hybrid ensemble machine learning models: A case study in the metropolitan area in Beijing, China

北京 内涝(考古学) 大都市区 中国 随机森林 机器学习 环境科学 逻辑回归 计算机科学 集成学习 人工智能 地理 考古 生态学 湿地 生物
作者
Mingqi Yan,Jiarui Yang,Xiaoyong Ni,Kai Liu,Yijia Wang,Fang Xu
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:630: 130695-130695 被引量:22
标识
DOI:10.1016/j.jhydrol.2024.130695
摘要

Urban waterlogging has emerged as a significant problem worldwide, particularly in densely populated cities. Accurate assessment of waterlogging susceptibility at the city scale is crucial for mitigating the risks associated with waterlogging and optimizing municipal design accordingly. However, existing studies on urban waterlogging susceptibility assessment have primarily relied on individual machine learning models. It is worthwhile to explore whether hybrid ensemble models have the potential to enhance the predictive performance. This research presents two hybrid ensemble machine learning models, namely Stacking and Blending, for assessing urban waterlogging susceptibility in the metropolitan area of Beijing, China. The performances of these models are compared with those of the widely used individual machine learning models. Evaluation of all the models is based on metrics such as Accuracy rate and Area Under Curve (AUC) score. The results demonstrate that the Stacking and Blending models consistently outperform the traditional machine learning models, such as Random Forest, Logistic Regression, etc. Through susceptibility analysis and model interpretation with SHAP method, this paper obtains several key findings that low lying areas may not necessarily be areas with severe waterlogging; urban roads and densely populated areas are highly susceptible to becoming high-risk areas for waterlogging in the study area. This study not only highlights the effectiveness of the Stacking and Blending models for urban waterlogging susceptibility assessment but also provides valuable insights for waterlogging mitigation strategies in urban planning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sunshitao发布了新的文献求助30
刚刚
媛媛完成签到 ,获得积分10
刚刚
刚刚
Stella应助tdtk采纳,获得30
1秒前
1秒前
爱学习的飞翔人完成签到,获得积分10
1秒前
1秒前
鲤鱼荔枝发布了新的文献求助10
1秒前
辛勤誉完成签到 ,获得积分10
2秒前
耳东完成签到,获得积分10
2秒前
2秒前
哭泣藏花完成签到 ,获得积分10
2秒前
William鉴哲发布了新的文献求助10
2秒前
haoyooo发布了新的文献求助10
2秒前
斯文的道罡完成签到,获得积分10
2秒前
Criminology34应助鹅鹅鹅丶采纳,获得10
3秒前
Stella应助大聪明采纳,获得30
3秒前
bkagyin应助Inspiring采纳,获得10
3秒前
风中巧曼完成签到,获得积分10
4秒前
5秒前
chengli完成签到,获得积分10
6秒前
炙热静白发布了新的文献求助10
6秒前
7秒前
MayoCQ完成签到,获得积分10
7秒前
7秒前
7秒前
科研通AI6应助不安映雁采纳,获得10
8秒前
Hilda007应助易水采纳,获得10
8秒前
Dongjie完成签到,获得积分10
8秒前
9秒前
Max完成签到,获得积分10
9秒前
Akim应助学术羊采纳,获得10
9秒前
舒适太阳完成签到,获得积分10
9秒前
HZ完成签到 ,获得积分10
9秒前
李子潭应助火星上如松采纳,获得40
10秒前
秦波完成签到,获得积分10
10秒前
李天磊发布了新的文献求助10
11秒前
Cuillli发布了新的文献求助10
11秒前
赘婿应助俭朴的帽子采纳,获得10
11秒前
bkagyin应助Sylvia0528采纳,获得10
11秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5337738
求助须知:如何正确求助?哪些是违规求助? 4474923
关于积分的说明 13926546
捐赠科研通 4369947
什么是DOI,文献DOI怎么找? 2401099
邀请新用户注册赠送积分活动 1394118
关于科研通互助平台的介绍 1366037