Urban waterlogging susceptibility assessment based on hybrid ensemble machine learning models: A case study in the metropolitan area in Beijing, China

北京 内涝(考古学) 大都市区 中国 随机森林 机器学习 环境科学 逻辑回归 计算机科学 集成学习 人工智能 地理 考古 生态学 湿地 生物
作者
Mingqi Yan,Jiarui Yang,Xiaoyong Ni,Kai Liu,Yijia Wang,Fang Xu
出处
期刊:Journal of Hydrology [Elsevier BV]
卷期号:630: 130695-130695 被引量:15
标识
DOI:10.1016/j.jhydrol.2024.130695
摘要

Urban waterlogging has emerged as a significant problem worldwide, particularly in densely populated cities. Accurate assessment of waterlogging susceptibility at the city scale is crucial for mitigating the risks associated with waterlogging and optimizing municipal design accordingly. However, existing studies on urban waterlogging susceptibility assessment have primarily relied on individual machine learning models. It is worthwhile to explore whether hybrid ensemble models have the potential to enhance the predictive performance. This research presents two hybrid ensemble machine learning models, namely Stacking and Blending, for assessing urban waterlogging susceptibility in the metropolitan area of Beijing, China. The performances of these models are compared with those of the widely used individual machine learning models. Evaluation of all the models is based on metrics such as Accuracy rate and Area Under Curve (AUC) score. The results demonstrate that the Stacking and Blending models consistently outperform the traditional machine learning models, such as Random Forest, Logistic Regression, etc. Through susceptibility analysis and model interpretation with SHAP method, this paper obtains several key findings that low lying areas may not necessarily be areas with severe waterlogging; urban roads and densely populated areas are highly susceptible to becoming high-risk areas for waterlogging in the study area. This study not only highlights the effectiveness of the Stacking and Blending models for urban waterlogging susceptibility assessment but also provides valuable insights for waterlogging mitigation strategies in urban planning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
AN发布了新的文献求助10
刚刚
向晚完成签到 ,获得积分10
1秒前
1秒前
打打应助JBY采纳,获得10
2秒前
香蕉觅云应助lvxinda采纳,获得10
2秒前
2秒前
Zzz完成签到,获得积分10
3秒前
HmH完成签到,获得积分10
3秒前
佳佳完成签到,获得积分10
3秒前
情怀应助MoonByMoon采纳,获得10
3秒前
123发布了新的文献求助30
3秒前
3秒前
4秒前
ddddansu完成签到,获得积分10
4秒前
科研通AI5应助美丽秋蝶采纳,获得10
4秒前
沈沈完成签到,获得积分10
5秒前
jing发布了新的文献求助10
5秒前
wxr完成签到 ,获得积分10
5秒前
5秒前
7秒前
一棵完成签到 ,获得积分10
7秒前
qiao完成签到,获得积分10
7秒前
7秒前
汉堡包应助Pendulium采纳,获得10
8秒前
hdbys完成签到,获得积分10
8秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
周轩完成签到,获得积分10
10秒前
liusj完成签到,获得积分10
10秒前
ss发布了新的文献求助10
10秒前
Miyo完成签到,获得积分10
11秒前
11秒前
11秒前
高贵的帽子完成签到 ,获得积分10
11秒前
AN完成签到,获得积分10
11秒前
Catalysis123发布了新的文献求助10
12秒前
12秒前
开心的人杰完成签到,获得积分10
13秒前
科目三应助儒雅大象采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5097673
求助须知:如何正确求助?哪些是违规求助? 4310117
关于积分的说明 13429226
捐赠科研通 4137515
什么是DOI,文献DOI怎么找? 2266700
邀请新用户注册赠送积分活动 1269881
关于科研通互助平台的介绍 1206170