Urban waterlogging susceptibility assessment based on hybrid ensemble machine learning models: A case study in the metropolitan area in Beijing, China

北京 内涝(考古学) 大都市区 中国 随机森林 机器学习 环境科学 逻辑回归 计算机科学 集成学习 人工智能 地理 考古 生态学 湿地 生物
作者
Mingqi Yan,Jiarui Yang,Xiaoyong Ni,Kai Liu,Yijia Wang,Fang Xu
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:630: 130695-130695 被引量:22
标识
DOI:10.1016/j.jhydrol.2024.130695
摘要

Urban waterlogging has emerged as a significant problem worldwide, particularly in densely populated cities. Accurate assessment of waterlogging susceptibility at the city scale is crucial for mitigating the risks associated with waterlogging and optimizing municipal design accordingly. However, existing studies on urban waterlogging susceptibility assessment have primarily relied on individual machine learning models. It is worthwhile to explore whether hybrid ensemble models have the potential to enhance the predictive performance. This research presents two hybrid ensemble machine learning models, namely Stacking and Blending, for assessing urban waterlogging susceptibility in the metropolitan area of Beijing, China. The performances of these models are compared with those of the widely used individual machine learning models. Evaluation of all the models is based on metrics such as Accuracy rate and Area Under Curve (AUC) score. The results demonstrate that the Stacking and Blending models consistently outperform the traditional machine learning models, such as Random Forest, Logistic Regression, etc. Through susceptibility analysis and model interpretation with SHAP method, this paper obtains several key findings that low lying areas may not necessarily be areas with severe waterlogging; urban roads and densely populated areas are highly susceptible to becoming high-risk areas for waterlogging in the study area. This study not only highlights the effectiveness of the Stacking and Blending models for urban waterlogging susceptibility assessment but also provides valuable insights for waterlogging mitigation strategies in urban planning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
金桔柠檬完成签到,获得积分10
刚刚
1秒前
Hanoi347应助TTTTT采纳,获得10
1秒前
逐梦远飞发布了新的文献求助10
1秒前
NexusExplorer应助高炜采纳,获得10
1秒前
2秒前
3321完成签到,获得积分10
2秒前
zyue发布了新的文献求助10
2秒前
曹梓轩发布了新的文献求助10
4秒前
peaklove7发布了新的文献求助10
4秒前
5秒前
5秒前
李子敬发布了新的文献求助10
5秒前
小二郎应助liuminghui采纳,获得10
5秒前
Lucas应助满意的世界采纳,获得30
6秒前
Sew东坡完成签到,获得积分10
6秒前
6秒前
芳菲依旧应助GUOGUO采纳,获得30
6秒前
6秒前
酷酷紫易发布了新的文献求助30
7秒前
无花果应助e394282438采纳,获得10
7秒前
maroto发布了新的文献求助10
7秒前
小猫完成签到,获得积分10
8秒前
鱼儿发布了新的文献求助10
9秒前
qiuyang完成签到,获得积分10
10秒前
10秒前
烟花应助大海捞针2025采纳,获得10
10秒前
11秒前
小晨晨啦发布了新的文献求助10
11秒前
Jasper应助长情洙采纳,获得10
11秒前
小猫发布了新的文献求助10
11秒前
12秒前
zzzzzz发布了新的文献求助10
12秒前
13秒前
13秒前
13秒前
ll完成签到,获得积分10
13秒前
qianqian发布了新的文献求助10
14秒前
14秒前
123关注了科研通微信公众号
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5660897
求助须知:如何正确求助?哪些是违规求助? 4836059
关于积分的说明 15092345
捐赠科研通 4819501
什么是DOI,文献DOI怎么找? 2579320
邀请新用户注册赠送积分活动 1533794
关于科研通互助平台的介绍 1492586