A novel method to design gradient porous structures with conformal density

沃罗诺图 共形映射 可控性 概率密度函数 边界(拓扑) 领域(数学) 几何学 功能(生物学) 算法 相似性(几何) 数学 密度梯度 拓扑(电路) 计算机科学 数学优化 数学分析 物理 应用数学 人工智能 统计 量子力学 组合数学 进化生物学 纯数学 图像(数学) 生物
作者
Bin Liu,Xiaofeng Wei,Wei Cao,Ping Lü,Xiaofeng Wang
出处
期刊:Thin-walled Structures [Elsevier]
卷期号:197: 111623-111623 被引量:5
标识
DOI:10.1016/j.tws.2024.111623
摘要

This work introduces a rapid modeling method for gradient porous structures with conformal density, aiming to address the challenges of transitional variation of porosity, and control of complex gradient variations in multiple directions. In comparison to other methods, this approach overcomes the limitations associated with coordinate systems and shape functions when designing complex gradient variations in multiple directions while achieving density variation with shape under different gradients. The method involves mapping the volumetric distance field to a density field using control functions. By adhering to the constraints of the density field, it employs a weighted random sampling method to attain gradient sites with shape-adaptive distribution. Voronoi polyhedron are then constructed based on these sites, and smooth Voronoi struts are generated using strut distance fields and improved Boolean operations. The boundary adaptation of the porous structure is subsequently achieved based on the volumetric distance field. By establishing the relationship between density and volumetric distance field values, the study illustrates the similarity between density variation in the structure and gradient variations in the control function, indicating the controllability of density variation with shape. Furthermore, the method enables the integration design of structural shape and mechanical properties through adjustments to the number of sites, radius size of struts, and gradient control functions. Finally, the method was validated through numerical simulation and experiments, demonstrating its controllability and effectiveness in generating random porous structures with conformal density gradients, providing important theoretical and practical support for research and application in related fields.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共享精神应助阿星捌采纳,获得10
2秒前
2秒前
5秒前
LucyMartinez完成签到,获得积分10
7秒前
调皮元珊发布了新的文献求助10
9秒前
mogugu完成签到,获得积分10
9秒前
科研通AI6.1应助荷塘月色采纳,获得10
11秒前
香蕉涫完成签到 ,获得积分10
13秒前
LOTUS发布了新的文献求助10
15秒前
Bugs完成签到,获得积分10
16秒前
21秒前
Anoxia发布了新的文献求助10
23秒前
24秒前
长苼发布了新的文献求助10
24秒前
华仔应助长苼采纳,获得10
35秒前
万松辉完成签到,获得积分10
46秒前
biu完成签到 ,获得积分10
46秒前
47秒前
勇yi完成签到,获得积分10
50秒前
阿星捌发布了新的文献求助10
53秒前
韩韩完成签到 ,获得积分10
1分钟前
无极微光应助张鱼小丸子采纳,获得20
1分钟前
mengli完成签到 ,获得积分10
1分钟前
科研通AI6.1应助阿星捌采纳,获得10
1分钟前
张鱼小丸子完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
SPARK应助科研通管家采纳,获得10
1分钟前
SPARK应助科研通管家采纳,获得10
1分钟前
SPARK应助科研通管家采纳,获得10
1分钟前
乐乐应助Robin95采纳,获得30
1分钟前
azzkmj发布了新的文献求助10
1分钟前
高分求助中
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
T/SNFSOC 0002—2025 独居石精矿碱法冶炼工艺技术标准 300
The Impact of Lease Accounting Standards on Lending and Investment Decisions 250
The Linearization Handbook for MILP Optimization: Modeling Tricks and Patterns for Practitioners (MILP Optimization Handbooks) 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5851942
求助须知:如何正确求助?哪些是违规求助? 6274706
关于积分的说明 15627471
捐赠科研通 4967879
什么是DOI,文献DOI怎么找? 2678818
邀请新用户注册赠送积分活动 1623007
关于科研通互助平台的介绍 1579466