已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Replicating and Digesting Anomalies in the Chinese A-Share Market

因子分析 经济 计量经济学 样品(材料) 金融经济学 精算学 色谱法 化学
作者
Zhibing Li,Laura Xiaolei Liu,Xiaoyu Liu,K.C. John Wei
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:70 (8): 5066-5090 被引量:23
标识
DOI:10.1287/mnsc.2023.4904
摘要

We replicate 469 anomaly variables similar to those studied by Hou et al. (2020) using Chinese A-share data and a reliable testing procedure with mainboard breakpoints and value-weighted returns. We find that 83.37% of the anomaly variables do not generate significant high-minus-low quintile raw return spreads. Further adjusting risk increases the failure rate slightly to 84.22% based on CAPM alphas and 86.99% based on Fama–French three-factor alphas. We show that the conventional procedure using all A-share breakpoints with equal-weighted returns for the anomaly test is indeed problematic as it assigns too much weight to microcaps and has a very limited investment capacity. The CH3-factor, CH4-factor, and q-factor models show the best performance over the whole sample period. The q-factor model is the best performer in the post-2007 subsample period after significant improvements occurred in China’s financial market environment, such as the completion of the split-share structure reform and the implementation of new accounting standards conforming to the International Financial Reporting Standards. The non–state-owned enterprise subsample in the post-2007 period is a cleaner sample in which the CH4-factor and q-factor models are the best performers. This paper was accepted by Lukas Schmid, finance. Funding: Z. Li acknowledges financial support from the National Natural Science Foundation of China [Grant 72103043] and the Fundamental Research Funds for the Central Universities in UIBE [Grants 19QN01 and 22PY053-72103043]. L. X. Liu acknowledges financial support from the National Natural Science Foundation of China [Grants 71872006 and 72273006]. L. X. Liu and X. Liu acknowledge financial support from the Guanghua Thought Leadership Platform of Peking University. K. C. J. Wei acknowledges partial financial support from the Research Grants Council of the Hong Kong Special Administrative Region, China [Grant 15507320]. The authors acknowledge financial support from the Guanghua School of Management, Peking University; the School of Banking and Finance, University of International Business and Economics; and the Non-PAIR Research Centre “Research Centre for Quantitative Finance” at Hong Kong Polytechnic University. Supplemental Material: The online appendix and data are available at https://doi.org/10.1287/mnsc.2023.4904 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
海阔凭宇跃完成签到,获得积分10
1秒前
宝丁完成签到,获得积分10
1秒前
1秒前
迷路灵波发布了新的文献求助10
1秒前
科研通AI2S应助戴哈哈采纳,获得10
2秒前
肚皮完成签到 ,获得积分10
3秒前
FHY发布了新的文献求助10
3秒前
fz发布了新的文献求助10
4秒前
xmr123456发布了新的文献求助10
4秒前
霸气凝云发布了新的文献求助10
5秒前
守墓人完成签到 ,获得积分10
7秒前
失眠的班完成签到,获得积分10
9秒前
Guo21完成签到,获得积分10
9秒前
调皮的千万完成签到,获得积分10
10秒前
11秒前
12秒前
12秒前
13秒前
磊磊磊发布了新的文献求助10
14秒前
科研通AI5应助upcomingbias采纳,获得10
14秒前
失眠的班发布了新的文献求助10
15秒前
大1完成签到,获得积分10
15秒前
xmr123456完成签到,获得积分10
19秒前
江夏发布了新的文献求助10
20秒前
21秒前
善学以致用应助Singularity采纳,获得10
21秒前
fz完成签到,获得积分10
21秒前
SupeRen发布了新的文献求助10
23秒前
upcomingbias完成签到,获得积分10
24秒前
orixero应助得过且郭过过采纳,获得10
24秒前
lucky完成签到 ,获得积分10
26秒前
upcomingbias发布了新的文献求助10
27秒前
29秒前
神勇语柳完成签到,获得积分20
30秒前
脑洞疼应助蒋彪采纳,获得10
33秒前
听话的捕完成签到,获得积分20
37秒前
40秒前
内向的大白完成签到,获得积分10
40秒前
41秒前
共享精神应助Singularity采纳,获得10
44秒前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
The organometallic chemistry of the transition metals 7th 666
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
Managing culturality in mediation sessions: Insights from membership categorization analysis and discursive psychology 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3699893
求助须知:如何正确求助?哪些是违规求助? 3250223
关于积分的说明 9868419
捐赠科研通 2962160
什么是DOI,文献DOI怎么找? 1624474
邀请新用户注册赠送积分活动 769364
科研通“疑难数据库(出版商)”最低求助积分说明 742233