Traditional Chinese Medicine Epidemic Prevention and Treatment Question-Answering Model Based on LLMs

中医药 疾病 药方 医学 替代医学 流行病 传染病(医学专业) 传统医学 计算机科学 病毒学 药理学 病理
作者
Zongzhen Zhou,Tao Yang,Kongfa Hu
标识
DOI:10.1109/bibm58861.2023.10385748
摘要

Background: Epidemic diseases in Traditional Chinese Medicine (TCM) constitute an essential part of Chinese medical science. TCM has accumulated rich theoretical and practical experiences in the prevention and treatment of epidemic diseases, forming the academic system of epidemic febrile disease, providing robust support for epidemic prevention and resistance in TCM. However, the numerous and complex literature on TCM epidemic diseases brings challenges to the organization and discovery of epidemic disease knowledges. Objective: To leverage the powerful knowledge learning ability of state-of-the-art LLMs (LLMs) to address the efficient acquisition and utilization of TCM epidemic disease knowledges. Methods: By collecting content related to epidemic diseases from 194 ancient TCM books, as well as the knowledge graph of TCM epidemic disease prevention and treatment, we built the large TCM epidemic disease model EpidemicCHAT based on the ChatGLM model. To assess the performances of the model, several open-source LLMs were compared in the study. Results: Compared to traditional LLMs, which may fail to answer or produce hallucinations in the field of TCM epidemic diseases, EpidemicCHAT demonstrates superior answering and reasoning abilities. In the evaluation of TCM epidemic disease prescription generation, the model achieved scores of 44.02, 61.10, and 59.40 on the BLEU-4, ROUGE-L, and METEOR metrics, respectively. Conclusion: The EpidemicCHAT model proposed in this study performs excellently in the field of TCM epidemic diseases, which might provide a reference for the construction of TCM LLMs and applications such as TCM auxiliary diagnosis and Chinese herbal prescription generation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
阿和完成签到,获得积分10
1秒前
1秒前
ding应助Zzzzzzy采纳,获得10
1秒前
星辰大海应助奔跑吧采纳,获得10
1秒前
田様应助alkaid采纳,获得10
2秒前
哈哈发布了新的文献求助10
3秒前
3秒前
q1010611084完成签到 ,获得积分10
4秒前
Dr.c发布了新的文献求助10
5秒前
KerwinLLL发布了新的文献求助10
5秒前
wanci应助机智的皮皮虾采纳,获得10
6秒前
高兴英发布了新的文献求助30
7秒前
7秒前
sskr发布了新的文献求助10
10秒前
ruisheng发布了新的文献求助10
11秒前
11秒前
11秒前
11秒前
mjk2622完成签到,获得积分10
11秒前
12秒前
桐桐应助二指断沧澜采纳,获得10
12秒前
13秒前
13秒前
图南发布了新的文献求助10
13秒前
劲秉应助福满財多采纳,获得10
14秒前
斯文败类应助李李李采纳,获得10
15秒前
许红祥发布了新的文献求助10
15秒前
斯文败类应助ECCE采纳,获得10
15秒前
15秒前
15秒前
CipherSage应助Dr.c采纳,获得10
16秒前
Zzzzzzy发布了新的文献求助10
16秒前
乐乐应助zzq采纳,获得10
16秒前
青青子衿完成签到,获得积分10
16秒前
li发布了新的文献求助10
18秒前
18秒前
丽丽发布了新的文献求助10
19秒前
郝小郝完成签到,获得积分10
19秒前
火山羊发布了新的文献求助10
20秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 870
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Development of general formulas for bolted flanges, by E.O. Waters [and others] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3255340
求助须知:如何正确求助?哪些是违规求助? 2897700
关于积分的说明 8297819
捐赠科研通 2566766
什么是DOI,文献DOI怎么找? 1393932
科研通“疑难数据库(出版商)”最低求助积分说明 652669
邀请新用户注册赠送积分活动 630314