侧根
生物
基因
细胞生物学
RNA干扰
生长素
转录因子
基因沉默
核糖核酸
遗传学
分子生物学
拟南芥
突变体
作者
Xuelian Wu,Zhe Wang,Anqi Du,Huaifeng Gao,Jiahui Liang,W. Yu,Haixiang Yu,Shihao Fan,Qiuju Chen,Jian Guo,Yuansong Xiao,Futian Peng
出处
期刊:Plant Physiology
[Oxford University Press]
日期:2024-01-13
卷期号:194 (4): 2472-2490
被引量:5
标识
DOI:10.1093/plphys/kiae017
摘要
Abstract LATERAL ORGAN BOUNDARIES DOMAIN/ASYMMETRIC LEAVES2-LIKEs (LBDs/ASLs) are plant-specific transcription factors that function downstream of auxin-regulated lateral root (LR) formation. Our previous research found that PpLBD16 positively regulates peach (Prunus persica) LR formation. However, the downstream regulatory network and target genes of PpLBD16 are still largely unknown. Here, we constructed a PpLBD16 homologous overexpression line and a PpLBD16 silenced line. We found that overexpressing PpLBD16 promoted peach root initiation, while silencing PpLBD16 inhibited peach root formation. Through RNA sequencing (RNA-seq) analysis of roots from PpLBD16 overexpression and silenced lines, we discovered that genes positively regulated by PpLBD16 were closely related to cell wall synthesis and degradation, ion/substance transport, and ion binding and homeostasis. To further detect the binding motifs and potential target genes of PpLBD16, we performed DNA-affinity purification sequencing (DAP-seq) analysis in vitro. PpLBD16 preferentially bound to CCNGAAANNNNGG (MEME-1), [C/T]TTCT[C/T][T/C] (MEME-2), and GCGGCGG (ABR1) motifs. By combined analysis of RNA-seq and DAP-seq data, we screened candidate target genes for PpLBD16. We demonstrated that PpLBD16 bound and activated the cell wall modification-related genes EXPANSIN-B2 (PpEXPB2) and SUBTILISIN-LIKE PROTEASE 1.7 (PpSBT1.7), the ion transport-related gene CYCLIC NUCLEOTIDE-GATED ION CHANNEL 1 (PpCNGC1) and the polyphenol oxidase (PPO)-encoding gene PpPPO, thereby controlling peach root organogenesis and promoting LR formation. Moreover, our results displayed that PpLBD16 and its target genes are involved in peach LR primordia development. Overall, this work reveals the downstream regulatory network and target genes of PpLBD16, providing insights into the molecular network of LBD16-mediated LR development.
科研通智能强力驱动
Strongly Powered by AbleSci AI