Nomogram for predicting venous thromboembolism after spinal surgery

列线图 医学 逻辑回归 接收机工作特性 单变量 曲线下面积 外科 多元统计 内科学 统计 数学
作者
Weiqing Kong,Chen Shao,Yukun Du,Jianyi Li,Jiale Shao,Hui-Qiang Hu,Yang Qu,Yongming Xi
出处
期刊:European Spine Journal [Springer Nature]
卷期号:33 (3): 1098-1108 被引量:1
标识
DOI:10.1007/s00586-023-08043-2
摘要

Abstract Purpose This study aimed to establish a nomogram to predict the risk of venous thromboembolism (VTE), identifying potential risk factors, and providing theoretical basis for prevention of VTE after spinal surgery. Methods A retrospective analysis was conducted on 2754 patients who underwent spinal surgery. The general characteristics of the training group were initially screened using univariate logistic analysis, and the LASSO method was used for optimal prediction. Subsequently, multivariate logistic regression analysis was performed to identify independent risk factors for postoperative VTE in the training group, and a nomogram for predict risk of VTE was established. The discrimination, calibration, and clinical usefulness of the nomogram were separately evaluated using the C-index, receiver operating characteristic curve, calibration plot and clinical decision curve, and was validated using data from the validation group finally. Results Multivariate logistic regression analysis identified 10 independent risk factors for VTE after spinal surgery. A nomogram was established based on these independent risk factors. The C-index for the training and validation groups indicating high accuracy and stability of the model. The area under the receiver operating characteristic curve indicating excellent discrimination ability; the calibration curves showed outstanding calibration for both the training and validation groups. Decision curve analysis showed the clinical net benefit of using the nomogram could be maximized in the probability threshold range of 0.01–1. Conclusion Patients undergoing spinal surgery with elevated D-dimer levels, prolonger surgical, and cervical surgery have higher risk of VTE. The nomogram can provide a theoretical basis for clinicians to prevent VTE.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
宋达发布了新的文献求助10
刚刚
慕青应助高大的易蓉采纳,获得10
刚刚
刚刚
kajimi完成签到,获得积分10
1秒前
1秒前
如意的雨琴完成签到 ,获得积分10
1秒前
2秒前
汉堡包应助想发sci采纳,获得10
2秒前
2秒前
张利双完成签到,获得积分10
3秒前
小王啵啵完成签到 ,获得积分10
3秒前
柚子茶茶茶完成签到,获得积分20
3秒前
科研通AI2S应助3ilence采纳,获得10
4秒前
浮游应助3ilence采纳,获得10
4秒前
科研通AI6应助lanchong采纳,获得10
4秒前
浮游应助FG采纳,获得10
5秒前
含蓄觅山完成签到 ,获得积分10
5秒前
江霭完成签到,获得积分10
6秒前
6秒前
6秒前
彭桢完成签到,获得积分10
6秒前
ppsweek发布了新的文献求助10
6秒前
6秒前
杨松发布了新的文献求助10
7秒前
如意的雨琴关注了科研通微信公众号
7秒前
椰子卷发布了新的文献求助10
7秒前
柒景景发布了新的文献求助10
7秒前
我是鸡汤完成签到,获得积分10
7秒前
顺心的觅荷完成签到 ,获得积分10
8秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
lll完成签到,获得积分20
9秒前
9秒前
myf完成签到 ,获得积分10
9秒前
10秒前
wjx发布了新的文献求助10
10秒前
10秒前
科研通AI6应助杨松采纳,获得10
10秒前
香蕉以云完成签到,获得积分10
11秒前
今后应助莫咏怡采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Machine Learning for Polymer Informatics 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5409900
求助须知:如何正确求助?哪些是违规求助? 4527473
关于积分的说明 14110874
捐赠科研通 4441846
什么是DOI,文献DOI怎么找? 2437698
邀请新用户注册赠送积分活动 1429670
关于科研通互助平台的介绍 1407745