阴极
电化学
六角棱镜
离子
过渡金属
六方晶系
结构精修
扩散
金属
材料科学
结构稳定性
相(物质)
钠
棱镜
化学
化学工程
纳米技术
结晶学
化学物理
晶体结构
电极
光学
物理化学
催化作用
热力学
冶金
工程类
有机化学
物理
结构工程
生物化学
作者
Dongmei Dai,Xiaobing Lai,Xiaojuan Wang,Yunting Yao,Mengmin Jia,Liang Wang,Pengyao Yan,Yaru Qiao,Zhuangzhuang Zhang,Bao Li,Dai‐Huo Liu
标识
DOI:10.1016/j.cclet.2023.109405
摘要
Na-ion cathode materials with a fast charge and discharge behavior are needed to develop future high-energy sodium-ion batteries (SIBs). However, inevitably complicated phase transitions and sluggish kinetics during insertion and removal of Na+ in P2-type layered transition metal oxides generate structural instability and severe capacity decay. To get rid of such a dilemma, we report a structural optimization strategy to promote P2-type layered transition metal oxides with more (010) active planes as an efficient cathode for SIBs. As a result, as-prepared hexagonal-prism P2-type layered Na0.71Li0.09Mn0.6Co0.16Ni0.16O2 cathode with more (010) active planes delivers a reversible capacity of 120.1 mAh/g at 0.1 C, impressive rate capability of 52.7 mAh/g at 10 C, and long-term cycling stability (capacity retention of 95.6% over 200 cycles). The outstanding electrochemical performance benefited from the unique hexagonal-prism with more (010) active facets, which can effectively shorten the diffusion distances of Na+, increase the Na-ion migration dynamics and nanostructural stability during cycling verified by morphology characterization, Rietveld refinement, GITT, density functional theory calculations and operando XRD.
科研通智能强力驱动
Strongly Powered by AbleSci AI