A method for the super-resolution reconstruction of remote sensing images based on multi-scale feature fusion and an attention mechanism

计算机科学 比例(比率) 计算机视觉 融合机制 人工智能 机制(生物学) 特征(语言学) 图像融合 传感器融合 融合 图像分辨率 遥感 特征提取 超分辨率 模式识别(心理学) 地质学 图像(数学) 地理 地图学 物理 脂质双层融合 哲学 量子力学 语言学
作者
Jiannong Shi,Sung‐Cheng Huang,Yang Sun
标识
DOI:10.1117/12.3021583
摘要

To handle the existence of remote sensing image super-resolution reconstruction algorithms that are unable to fully utilize multi-scale information, insufficient feature extraction of remote sensing images and lack of learning ability of high-frequency information, This paper introduces a technique for enhancing the resolution of remote sensing images by employing multi-scale feature fusion and attention mechanism. The method firstly uses a single convolutional layer for preliminary feature extraction; secondly, a multiscale feature fusion-attention mechanism residual module (MFAM) is proposed in the nonlinear mapping stage, which uses three different sizes of convolutional kernels for feature extraction and fusion to make fuller use of the detailed parts of remote sensing images, and makes use of the serial-structured channels and the spatial attention mechanism to adaptively extract and enhance the high-frequency information; finally, sub-pixel convolution is used to realize up-sampling and complete the reconstruction for remote sensing images. we conduct comparison experiments of multiple methods on NWPU-RESISC45 and UC Merced datasets in this paper. The experiments in this article demonstrate that the proposed method has shown improvements across various evaluation metrics, resulting in superior super-resolution reconstruction results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿泽完成签到,获得积分20
刚刚
1秒前
1秒前
1秒前
舒适静曼发布了新的文献求助10
1秒前
星桥火树彻明开完成签到,获得积分10
2秒前
2秒前
Owen应助gggqh采纳,获得10
4秒前
DLa-feng完成签到,获得积分20
4秒前
菜花完成签到,获得积分20
5秒前
5秒前
5秒前
6秒前
嘉心糖应助DLa-feng采纳,获得30
6秒前
jfaioe完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
SCH完成签到,获得积分10
7秒前
LmaPN7发布了新的文献求助20
7秒前
7秒前
大力雨柏发布了新的文献求助10
7秒前
诗诗发布了新的文献求助10
7秒前
thth完成签到,获得积分10
7秒前
NIM-ZHAO完成签到,获得积分10
8秒前
8秒前
kongchao008发布了新的文献求助10
8秒前
Akim应助直率的书桃采纳,获得10
9秒前
9秒前
9秒前
领导范儿应助机灵的颜演采纳,获得10
9秒前
小纯洁发布了新的文献求助10
9秒前
CipherSage应助渔民采纳,获得10
9秒前
Daryl完成签到,获得积分10
9秒前
Zxz发布了新的文献求助10
10秒前
hoo发布了新的文献求助10
11秒前
书双发布了新的文献求助10
11秒前
chenmin应助Sir.夏季风采纳,获得10
11秒前
李健应助广隶十良采纳,获得10
11秒前
充电宝应助kami采纳,获得10
11秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309103
求助须知:如何正确求助?哪些是违规求助? 2942468
关于积分的说明 8508989
捐赠科研通 2617498
什么是DOI,文献DOI怎么找? 1430174
科研通“疑难数据库(出版商)”最低求助积分说明 664072
邀请新用户注册赠送积分活动 649239