Personalized differential expression analysis in triple-negative breast cancer

生物 基因 乳腺癌 计算生物学 癌症 人口 表型 遗传学 癌症研究 医学 环境卫生
作者
Hao Cai,Liangbo Chen,Shuxin Yang,Rui-Sheng Jiang,You Guo,Ming He,Yun Luo,Guini Hong,Hong‐Dong Li,Kai Song
出处
期刊:Briefings in Functional Genomics [Oxford University Press]
标识
DOI:10.1093/bfgp/elad057
摘要

Abstract Identification of individual-level differentially expressed genes (DEGs) is a pre-step for the analysis of disease-specific biological mechanisms and precision medicine. Previous algorithms cannot balance accuracy and sufficient statistical power. Herein, RankCompV2, designed for identifying population-level DEGs based on relative expression orderings, was adjusted to identify individual-level DEGs. Furthermore, an optimized version of individual-level RankCompV2, named as RankCompV2.1, was designed based on the assumption that the rank positions of genes and relative rank differences of gene pairs would influence the identification of individual-level DEGs. In comparison to other individualized analysis algorithms, RankCompV2.1 performed better on statistical power, computational efficiency, and acquired coequal accuracy in both simulation and real paired cancer-normal data from ten cancer types. Besides, single sample GSEA and Gene Set Variation Analysis analysis showed that pathways enriched with up-regulated and down-regulated genes presented higher and lower enrichment scores, respectively. Furthermore, we identified 16 genes that were universally deregulated in 966 triple-negative breast cancer (TNBC) samples and interacted with Food and Drug Administration (FDA)-approved drugs or antineoplastic agents, indicating notable therapeutic targets for TNBC. In addition, we also identified genes with highly variable deregulation status and used these genes to cluster TNBC samples into three subgroups with different prognoses. The subgroup with the poorest outcome was characterized by down-regulated immune-regulated pathways, signal transduction pathways, and apoptosis-related pathways. Protein–protein interaction network analysis revealed that OAS family genes may be promising drug targets to activate tumor immunity in this subgroup. In conclusion, RankCompV2.1 is capable of identifying individual-level DEGs with high accuracy and statistical power, analyzing mechanisms of carcinogenesis and exploring therapeutic strategy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
Ava应助Res_M采纳,获得10
4秒前
5秒前
12578发布了新的文献求助10
6秒前
华仔应助HH采纳,获得10
6秒前
呜哈哈发布了新的文献求助10
6秒前
脑洞疼应助ccm采纳,获得10
7秒前
宋芽芽u完成签到 ,获得积分10
9秒前
9秒前
10秒前
11秒前
11秒前
12秒前
阿Q发布了新的文献求助30
13秒前
太阳加鲁鲁完成签到,获得积分10
13秒前
14秒前
Suyi发布了新的文献求助10
14秒前
15秒前
zjy关闭了zjy文献求助
17秒前
17秒前
dreamly完成签到 ,获得积分10
17秒前
19秒前
今夜无人入眠完成签到,获得积分10
19秒前
20秒前
20秒前
21秒前
21秒前
YZ发布了新的文献求助10
23秒前
olivia发布了新的文献求助30
23秒前
lxz发布了新的文献求助20
23秒前
24秒前
zhang完成签到 ,获得积分10
25秒前
打打应助陶醉觅夏采纳,获得10
25秒前
25秒前
松子发布了新的文献求助10
26秒前
29秒前
scdd完成签到 ,获得积分10
29秒前
难过的元珊完成签到,获得积分10
29秒前
30秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3455268
求助须知:如何正确求助?哪些是违规求助? 3050635
关于积分的说明 9021890
捐赠科研通 2739221
什么是DOI,文献DOI怎么找? 1502502
科研通“疑难数据库(出版商)”最低求助积分说明 694549
邀请新用户注册赠送积分活动 693350