Multiphase flow rate prediction using chained multi-output regression models

平均绝对百分比误差 支持向量机 扼流圈 统计 井口 回归分析 体积流量 计算机科学 机器学习 均方误差 数学 石油工程 工程类 物理 量子力学 电气工程
作者
Md Ferdous Wahid,Reza Tafreshi,Zurwa Khan,Albertus Retnanto
标识
DOI:10.1016/j.geoen.2023.212403
摘要

Virtual flow meters (VFM) are emerging as an attractive and cost-effective alternative to traditional multiphase flow meters to meet monitoring demands, reduce operational costs, and improve oil recovery efficiency. However, no previous studies have accounted for the correlations between the oil, water, and gas flow rates when developing machine learning models. This study proposes a chained regression model for multiphase flow rate prediction to account for such relationships. Real-field data consists of 375 data points for sensory measurements, including pressure, temperature, and choke opening levels, and 42 data points for oil, water, and gas flow rates that were measured downstream of the wellhead, which was acquired over one month. Two robust algorithms, Support Vector Machine (SVM) and Gaussian Process (GP), were employed to develop the chained regression model. The evaluation metrics such as mean absolute percentage error (MAPE) for all the models were estimated using a repeated hold-out approach of cross-validation. The response variables, i.e., the three flow rates, were moderate to strongly correlated. The results showed that the GP-based chain regression model was significantly better than the direct model using the GP algorithm for oil (MAPE: 2.07% vs. 2.27%) and gas (MAPE: 2.5% vs. 2.65%) flow rate prediction (p < 0.01). Overall, the chained model is generally superior to the direct model for flow rate prediction, which was supported by the ranking scores, consistently outperforming the latter in both SVM (79 vs. 87) and GP (64 vs. 70) based approaches. The sensitivity analysis showed that the GP-based chained model accurately predicted oil, water, and gas flow rates within 39.45 m3/day, 14.69 m3/day, and 5.63 m3/day, respectively, of the actual values for approximately 92% of the data points. This study’s findings can be instrumental in designing and developing practical and accurate VFM for multiphase flow rate prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SYLH应助fredxjx采纳,获得10
刚刚
开心的章鱼哥完成签到,获得积分10
1秒前
和谐幻柏发布了新的文献求助20
1秒前
JamesPei应助tyx采纳,获得10
2秒前
3秒前
3秒前
可爱的函函应助6260采纳,获得10
3秒前
李健应助勤劳绿毛龟采纳,获得10
4秒前
英俊的铭应助勤劳绿毛龟采纳,获得10
4秒前
慕青应助勤劳绿毛龟采纳,获得10
4秒前
CipherSage应助勤劳绿毛龟采纳,获得10
4秒前
脑洞疼应助勤劳绿毛龟采纳,获得10
4秒前
香蕉觅云应助勤劳绿毛龟采纳,获得10
4秒前
4秒前
bkagyin应助勤劳绿毛龟采纳,获得10
4秒前
CodeCraft应助勤劳绿毛龟采纳,获得10
4秒前
CipherSage应助勤劳绿毛龟采纳,获得10
4秒前
科研通AI2S应助勤劳绿毛龟采纳,获得10
4秒前
小小苏荷发布了新的文献求助10
6秒前
6秒前
薛定谔的猫完成签到,获得积分10
6秒前
科研通AI2S应助cuckoo采纳,获得10
8秒前
科目三应助LucienS采纳,获得10
9秒前
9秒前
10秒前
佩佩完成签到 ,获得积分10
11秒前
碧蓝老虎发布了新的文献求助10
11秒前
小琦琦发布了新的文献求助10
11秒前
13秒前
彭于晏应助kakafan采纳,获得10
15秒前
YQP发布了新的文献求助10
16秒前
小小苏荷完成签到,获得积分10
16秒前
16秒前
白嶷发布了新的文献求助10
17秒前
18秒前
LucienS完成签到,获得积分10
18秒前
小蘑菇应助jm采纳,获得10
18秒前
赘婿应助拔丝香芋采纳,获得10
20秒前
佳佳应助北北采纳,获得10
20秒前
hhh完成签到,获得积分10
20秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966626
求助须知:如何正确求助?哪些是违规求助? 3512100
关于积分的说明 11161688
捐赠科研通 3246938
什么是DOI,文献DOI怎么找? 1793609
邀请新用户注册赠送积分活动 874495
科研通“疑难数据库(出版商)”最低求助积分说明 804420