Preoperative Three-Dimensional Morphological Tumor Features Predict Microvascular Invasion in Hepatocellular Carcinoma

接收机工作特性 逻辑回归 肝细胞癌 单变量 多元统计 医学 置信区间 多元分析 单变量分析 放射科 核医学 内科学 数学 统计
作者
Y H Li,Pengpeng Li,Junjie Ma,Yuanyuan Wang,Qiyu Tian,Jian Yu,Qinghui Zhang,Huazheng Shi,Weiping Zhou,Gang Huang
出处
期刊:Academic Radiology [Elsevier]
卷期号:31 (5): 1862-1869 被引量:1
标识
DOI:10.1016/j.acra.2023.10.060
摘要

Rationale and Objectives The study was designed to evaluate microvascular invasion (MVI) using three-dimensional (3D) morphological indicators prior to surgery. Materials and Methods This retrospective study included 156 patients with hepatocellular carcinoma (HCC) at our hospital from 2017 to 2018. Through thin-layer CT scanning and 3D reconstruction, the tumor surface inclination angles can be quantitatively analyzed to determine the surface irregularity rate (SIR), which serves as a comprehensive assessment method for tumor irregularity based on preoperative 3D morphological evaluation. Univariate and multivariate logistic regression analyses were employed to investigate the correlation with MVI. Results The SIR was related to MVI (OR: 10.667, P < 0.001). Multivariate logistic regression analysis showed that the SIR was an independent risk factor for MVI. The area under the receiver operating characteristic curve (ROC) of prediction model composed of the morphological indicator SIR was 0.831 (95% confidence interval: 0.759–0.895). Conclusion The preoperative 3D morphological indicator SIR of a tumor is an accurate predictor of MVI, providing a valuable tool in clinical decision-making. The study was designed to evaluate microvascular invasion (MVI) using three-dimensional (3D) morphological indicators prior to surgery. This retrospective study included 156 patients with hepatocellular carcinoma (HCC) at our hospital from 2017 to 2018. Through thin-layer CT scanning and 3D reconstruction, the tumor surface inclination angles can be quantitatively analyzed to determine the surface irregularity rate (SIR), which serves as a comprehensive assessment method for tumor irregularity based on preoperative 3D morphological evaluation. Univariate and multivariate logistic regression analyses were employed to investigate the correlation with MVI. The SIR was related to MVI (OR: 10.667, P < 0.001). Multivariate logistic regression analysis showed that the SIR was an independent risk factor for MVI. The area under the receiver operating characteristic curve (ROC) of prediction model composed of the morphological indicator SIR was 0.831 (95% confidence interval: 0.759–0.895). The preoperative 3D morphological indicator SIR of a tumor is an accurate predictor of MVI, providing a valuable tool in clinical decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
zx完成签到,获得积分20
1秒前
共享精神应助科研通管家采纳,获得10
2秒前
科目三应助科研通管家采纳,获得10
2秒前
小蘑菇应助科研通管家采纳,获得10
2秒前
Hey发布了新的文献求助10
2秒前
不配.应助科研通管家采纳,获得10
2秒前
完美世界应助科研通管家采纳,获得10
2秒前
科目三应助科研通管家采纳,获得10
2秒前
英俊的铭应助科研通管家采纳,获得10
2秒前
丘比特应助科研通管家采纳,获得10
3秒前
英俊的铭应助科研通管家采纳,获得10
3秒前
爆米花应助科研通管家采纳,获得10
3秒前
maox1aoxin应助科研通管家采纳,获得10
3秒前
LEON发布了新的文献求助10
3秒前
3秒前
共享精神应助科研通管家采纳,获得10
3秒前
嗯哼应助科研通管家采纳,获得20
3秒前
3秒前
思源应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
FashionBoy应助炙热美女采纳,获得10
4秒前
1238125446完成签到,获得积分20
4秒前
脱壳金蝉完成签到,获得积分10
4秒前
4秒前
yu_z完成签到 ,获得积分10
5秒前
kk应助典雅的俊驰采纳,获得10
5秒前
开朗的板凳完成签到 ,获得积分10
5秒前
5秒前
哦豁应助卓卓采纳,获得10
5秒前
6秒前
传奇3应助火星上黑米采纳,获得10
6秒前
6秒前
趣多多发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
小鱼儿发布了新的文献求助10
6秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160777
求助须知:如何正确求助?哪些是违规求助? 2811863
关于积分的说明 7893780
捐赠科研通 2470702
什么是DOI,文献DOI怎么找? 1315762
科研通“疑难数据库(出版商)”最低求助积分说明 631003
版权声明 602053