Improving accuracy of early dental carious lesions detection using deep learning-based automated method

牙科 卷积神经网络 口腔正畸科 医学 乳牙 恒牙 人工智能 计算机科学
作者
Paula Dresch Portella,Lucas Ferrari de Oliveira,Mateus Felipe de Cássio Ferreira,Bruna Cristine Dias,Juliana Feltrin de Souza,Luciana Reichert da Silva Assunção
出处
期刊:Clinical Oral Investigations [Springer Nature]
卷期号:27 (12): 7663-7670 被引量:4
标识
DOI:10.1007/s00784-023-05355-x
摘要

To investigate the effectiveness of a convolutional neural network (CNN) in detecting healthy teeth and early carious lesions on occlusal surfaces and to assess the applicability of this deep learning algorithm as an auxiliary aid. A total of 2,481 posterior teeth (2,459 permanent and 22 deciduous teeth) with varying stages of carious lesions were classified according to the International Caries Detection and Assessment System (ICDAS). After clinical evaluation, ICDAS 0 and 2 occlusal surfaces were photographed with a professional digital camera. VGG-19 was chosen as the CNN and the findings were compared with those of a reference examiner to evaluate its detection efficiency. To verify the effectiveness of the CNN as an auxiliary detection aid, three examiners (an undergraduate student (US), a newly graduated dental surgeon (ND), and a specialist in pediatric dentistry (SP) assessed the acquired images (Phase I). In Phase II, the examiners reassessed the same images using the CNN-generated algorithms. The training dataset consisted of 8,749 images, whereas the test dataset included 140 images. VGG-19 achieved an accuracy of 0.879, positive agreement of 0.827, precision of 0.949, negative agreement 0.800, and an F1-score of 0.887. In Phase I, the accuracy rates for examiners US, ND, and SP were 0.543, 0.771, and 0.807, respectively. In Phase II, the accuracy rates improved to 0.679, 0.886, and 0.857 for the respective examiners. The number of correct answers was significantly higher in Phase II than in Phase I for all examiners (McNemar test;P<0.05). VGG-19 demonstrated satisfactory performance in the detection of early carious lesions, as well as an auxiliary detection aid. Automated detection using deep learning algorithms is an important aid in detecting early caries lesions and improves the accuracy of the disease detection, enabling quicker and more reliable clinical decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zhang完成签到 ,获得积分10
刚刚
贾不可完成签到,获得积分10
1秒前
苏信怜完成签到,获得积分10
1秒前
Jerry完成签到,获得积分10
2秒前
情怀应助老实外绣采纳,获得10
2秒前
ergatoid完成签到,获得积分10
3秒前
RRR971028完成签到,获得积分10
4秒前
坦率的怜容完成签到,获得积分10
7秒前
柳七完成签到,获得积分10
7秒前
薄荷味完成签到 ,获得积分10
8秒前
whyme完成签到,获得积分10
11秒前
Yi完成签到,获得积分10
12秒前
淡淡菠萝完成签到 ,获得积分10
13秒前
老天师一巴掌完成签到 ,获得积分10
13秒前
苏格拉底的嘲笑完成签到,获得积分10
13秒前
白枫完成签到 ,获得积分10
14秒前
nininidoc完成签到,获得积分10
16秒前
邓娅琴完成签到 ,获得积分10
16秒前
16秒前
Duan完成签到 ,获得积分10
17秒前
要文献啊完成签到 ,获得积分10
17秒前
芝麻糊应助yeape采纳,获得10
17秒前
Xx完成签到 ,获得积分10
17秒前
等我吃胖完成签到,获得积分10
20秒前
虚幻龙猫完成签到,获得积分10
20秒前
年少丶完成签到,获得积分10
22秒前
蓓蓓完成签到,获得积分10
22秒前
研友_VZG7GZ应助洁净斑马采纳,获得10
23秒前
CY完成签到,获得积分10
24秒前
phil完成签到,获得积分10
25秒前
anhuiwsy完成签到 ,获得积分10
26秒前
yydragen应助入门的橙橙采纳,获得50
29秒前
自信向梦完成签到,获得积分10
31秒前
细腻曼冬完成签到 ,获得积分10
31秒前
量子星尘发布了新的文献求助10
31秒前
phil完成签到,获得积分10
32秒前
34秒前
赵亚南完成签到,获得积分10
37秒前
顾矜应助ATOM采纳,获得10
37秒前
等待小刺猬完成签到,获得积分10
37秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015708
求助须知:如何正确求助?哪些是违规求助? 3555661
关于积分的说明 11318291
捐赠科研通 3288879
什么是DOI,文献DOI怎么找? 1812301
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812027