Improving accuracy of early dental carious lesions detection using deep learning-based automated method

牙科 卷积神经网络 口腔正畸科 医学 乳牙 恒牙 人工智能 计算机科学
作者
Paula Dresch Portella,Lucas Ferrari de Oliveira,Mateus Felipe de Cássio Ferreira,Bruna Cristine Dias,Juliana Feltrin de Souza,Luciana Reichert da Silva Assunção
出处
期刊:Clinical Oral Investigations [Springer Nature]
卷期号:27 (12): 7663-7670 被引量:4
标识
DOI:10.1007/s00784-023-05355-x
摘要

To investigate the effectiveness of a convolutional neural network (CNN) in detecting healthy teeth and early carious lesions on occlusal surfaces and to assess the applicability of this deep learning algorithm as an auxiliary aid. A total of 2,481 posterior teeth (2,459 permanent and 22 deciduous teeth) with varying stages of carious lesions were classified according to the International Caries Detection and Assessment System (ICDAS). After clinical evaluation, ICDAS 0 and 2 occlusal surfaces were photographed with a professional digital camera. VGG-19 was chosen as the CNN and the findings were compared with those of a reference examiner to evaluate its detection efficiency. To verify the effectiveness of the CNN as an auxiliary detection aid, three examiners (an undergraduate student (US), a newly graduated dental surgeon (ND), and a specialist in pediatric dentistry (SP) assessed the acquired images (Phase I). In Phase II, the examiners reassessed the same images using the CNN-generated algorithms. The training dataset consisted of 8,749 images, whereas the test dataset included 140 images. VGG-19 achieved an accuracy of 0.879, positive agreement of 0.827, precision of 0.949, negative agreement 0.800, and an F1-score of 0.887. In Phase I, the accuracy rates for examiners US, ND, and SP were 0.543, 0.771, and 0.807, respectively. In Phase II, the accuracy rates improved to 0.679, 0.886, and 0.857 for the respective examiners. The number of correct answers was significantly higher in Phase II than in Phase I for all examiners (McNemar test;P<0.05). VGG-19 demonstrated satisfactory performance in the detection of early carious lesions, as well as an auxiliary detection aid. Automated detection using deep learning algorithms is an important aid in detecting early caries lesions and improves the accuracy of the disease detection, enabling quicker and more reliable clinical decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
温暖完成签到 ,获得积分10
12秒前
pp完成签到,获得积分10
17秒前
大模型应助科研通管家采纳,获得10
24秒前
平常从蓉完成签到,获得积分10
39秒前
AURORA丶完成签到 ,获得积分10
44秒前
Citrus完成签到 ,获得积分10
48秒前
午后狂睡完成签到 ,获得积分10
49秒前
yii完成签到 ,获得积分10
52秒前
轩辕剑身完成签到,获得积分0
55秒前
郑志凡完成签到 ,获得积分10
58秒前
Citrus完成签到 ,获得积分10
1分钟前
沉默采波完成签到 ,获得积分10
1分钟前
博士搏斗完成签到 ,获得积分0
1分钟前
Phoenix完成签到,获得积分10
1分钟前
很厉害的黄桃完成签到 ,获得积分10
1分钟前
ktw完成签到,获得积分10
1分钟前
沧海一粟米完成签到 ,获得积分10
1分钟前
叮叮当当完成签到,获得积分10
1分钟前
monster完成签到 ,获得积分10
1分钟前
Judy完成签到 ,获得积分10
1分钟前
xu完成签到 ,获得积分10
1分钟前
认真又亦完成签到 ,获得积分10
1分钟前
求助完成签到,获得积分0
1分钟前
Binbin完成签到 ,获得积分10
1分钟前
Alexbirchurros完成签到 ,获得积分10
1分钟前
mengmenglv完成签到 ,获得积分0
1分钟前
逢场作戱__完成签到 ,获得积分10
1分钟前
xxggyy007完成签到 ,获得积分10
2分钟前
小肥杨完成签到 ,获得积分10
2分钟前
迷路柜子完成签到 ,获得积分10
2分钟前
2分钟前
yan完成签到,获得积分10
2分钟前
小碗完成签到 ,获得积分10
2分钟前
popo6150完成签到,获得积分10
2分钟前
深情安青应助科研通管家采纳,获得10
2分钟前
勤劳善良的胖蜜蜂完成签到 ,获得积分10
2分钟前
姚芭蕉完成签到 ,获得积分0
2分钟前
2分钟前
ivy完成签到 ,获得积分10
2分钟前
困困困完成签到 ,获得积分10
2分钟前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
Case Research: The Case Writing Process 300
Global Geological Record of Lake Basins 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142849
求助须知:如何正确求助?哪些是违规求助? 2793717
关于积分的说明 7807147
捐赠科研通 2450021
什么是DOI,文献DOI怎么找? 1303576
科研通“疑难数据库(出版商)”最低求助积分说明 627016
版权声明 601350