Improving accuracy of early dental carious lesions detection using deep learning-based automated method

牙科 卷积神经网络 口腔正畸科 医学 乳牙 恒牙 人工智能 计算机科学
作者
Paula Dresch Portella,Lucas Ferrari de Oliveira,Mateus Felipe de Cássio Ferreira,Bruna Cristine Dias,Juliana Feltrin de Souza,Luciana Reichert da Silva Assunção
出处
期刊:Clinical Oral Investigations [Springer Nature]
卷期号:27 (12): 7663-7670 被引量:4
标识
DOI:10.1007/s00784-023-05355-x
摘要

To investigate the effectiveness of a convolutional neural network (CNN) in detecting healthy teeth and early carious lesions on occlusal surfaces and to assess the applicability of this deep learning algorithm as an auxiliary aid. A total of 2,481 posterior teeth (2,459 permanent and 22 deciduous teeth) with varying stages of carious lesions were classified according to the International Caries Detection and Assessment System (ICDAS). After clinical evaluation, ICDAS 0 and 2 occlusal surfaces were photographed with a professional digital camera. VGG-19 was chosen as the CNN and the findings were compared with those of a reference examiner to evaluate its detection efficiency. To verify the effectiveness of the CNN as an auxiliary detection aid, three examiners (an undergraduate student (US), a newly graduated dental surgeon (ND), and a specialist in pediatric dentistry (SP) assessed the acquired images (Phase I). In Phase II, the examiners reassessed the same images using the CNN-generated algorithms. The training dataset consisted of 8,749 images, whereas the test dataset included 140 images. VGG-19 achieved an accuracy of 0.879, positive agreement of 0.827, precision of 0.949, negative agreement 0.800, and an F1-score of 0.887. In Phase I, the accuracy rates for examiners US, ND, and SP were 0.543, 0.771, and 0.807, respectively. In Phase II, the accuracy rates improved to 0.679, 0.886, and 0.857 for the respective examiners. The number of correct answers was significantly higher in Phase II than in Phase I for all examiners (McNemar test;P<0.05). VGG-19 demonstrated satisfactory performance in the detection of early carious lesions, as well as an auxiliary detection aid. Automated detection using deep learning algorithms is an important aid in detecting early caries lesions and improves the accuracy of the disease detection, enabling quicker and more reliable clinical decision-making.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助雾隐采纳,获得10
刚刚
勤劳傲安发布了新的文献求助10
刚刚
刚刚
绍成发布了新的文献求助10
刚刚
刚刚
fanyy发布了新的文献求助10
刚刚
刚刚
小圆发布了新的文献求助10
1秒前
舒适语蓉发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
2秒前
Denny完成签到,获得积分10
2秒前
无名完成签到,获得积分10
2秒前
满意曼荷应助渣渣慧采纳,获得30
2秒前
爆米花应助美好斓采纳,获得10
3秒前
3秒前
3秒前
甜甜的爆米花完成签到,获得积分10
3秒前
浮游应助快乐傲南采纳,获得10
3秒前
肖宇完成签到,获得积分10
3秒前
cloud完成签到,获得积分10
4秒前
研友_VZG7GZ应助Jattck采纳,获得10
4秒前
土豆发布了新的文献求助10
5秒前
依风发布了新的文献求助10
5秒前
5秒前
5秒前
1357695589发布了新的文献求助10
5秒前
5秒前
6秒前
小强发布了新的文献求助30
7秒前
轻松煎饼发布了新的文献求助10
7秒前
7秒前
彩色铅笔发布了新的文献求助10
7秒前
7秒前
8秒前
无情的函完成签到,获得积分10
8秒前
8秒前
9秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Advanced Memory Technology: Functional Materials and Devices 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5692559
求助须知:如何正确求助?哪些是违规求助? 5089055
关于积分的说明 15208836
捐赠科研通 4849783
什么是DOI,文献DOI怎么找? 2601280
邀请新用户注册赠送积分活动 1553052
关于科研通互助平台的介绍 1511274