Improving accuracy of early dental carious lesions detection using deep learning-based automated method

牙科 卷积神经网络 口腔正畸科 医学 乳牙 恒牙 人工智能 计算机科学
作者
Paula Dresch Portella,Lucas Ferrari de Oliveira,Mateus Felipe de Cássio Ferreira,Bruna Cristine Dias,Juliana Feltrin de Souza,Luciana Reichert da Silva Assunção
出处
期刊:Clinical Oral Investigations [Springer Nature]
卷期号:27 (12): 7663-7670 被引量:4
标识
DOI:10.1007/s00784-023-05355-x
摘要

To investigate the effectiveness of a convolutional neural network (CNN) in detecting healthy teeth and early carious lesions on occlusal surfaces and to assess the applicability of this deep learning algorithm as an auxiliary aid. A total of 2,481 posterior teeth (2,459 permanent and 22 deciduous teeth) with varying stages of carious lesions were classified according to the International Caries Detection and Assessment System (ICDAS). After clinical evaluation, ICDAS 0 and 2 occlusal surfaces were photographed with a professional digital camera. VGG-19 was chosen as the CNN and the findings were compared with those of a reference examiner to evaluate its detection efficiency. To verify the effectiveness of the CNN as an auxiliary detection aid, three examiners (an undergraduate student (US), a newly graduated dental surgeon (ND), and a specialist in pediatric dentistry (SP) assessed the acquired images (Phase I). In Phase II, the examiners reassessed the same images using the CNN-generated algorithms. The training dataset consisted of 8,749 images, whereas the test dataset included 140 images. VGG-19 achieved an accuracy of 0.879, positive agreement of 0.827, precision of 0.949, negative agreement 0.800, and an F1-score of 0.887. In Phase I, the accuracy rates for examiners US, ND, and SP were 0.543, 0.771, and 0.807, respectively. In Phase II, the accuracy rates improved to 0.679, 0.886, and 0.857 for the respective examiners. The number of correct answers was significantly higher in Phase II than in Phase I for all examiners (McNemar test;P<0.05). VGG-19 demonstrated satisfactory performance in the detection of early carious lesions, as well as an auxiliary detection aid. Automated detection using deep learning algorithms is an important aid in detecting early caries lesions and improves the accuracy of the disease detection, enabling quicker and more reliable clinical decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lynch发布了新的文献求助10
1秒前
尽舜尧完成签到,获得积分10
1秒前
2秒前
马冬梅完成签到 ,获得积分10
2秒前
liu完成签到,获得积分10
2秒前
yoyo发布了新的文献求助10
2秒前
2025迷完成签到 ,获得积分10
2秒前
明理的亦寒完成签到 ,获得积分10
2秒前
bkagyin应助三金采纳,获得30
2秒前
3秒前
3秒前
4秒前
Leeny发布了新的文献求助10
4秒前
Hello应助zhangzhen采纳,获得10
4秒前
领导范儿应助Nolan采纳,获得10
4秒前
浮游应助小救星采纳,获得10
5秒前
6秒前
靳佩发布了新的文献求助10
7秒前
CipherSage应助ZHAYUE采纳,获得10
8秒前
越啊发布了新的文献求助10
8秒前
111发布了新的文献求助10
10秒前
12秒前
白衣修身完成签到,获得积分10
12秒前
科研通AI5应助yoyo采纳,获得10
13秒前
哈尼酱完成签到,获得积分10
13秒前
14秒前
16秒前
17秒前
17秒前
宓之云完成签到,获得积分10
17秒前
Nolan发布了新的文献求助10
18秒前
18秒前
苗条向珊发布了新的文献求助10
19秒前
19秒前
眼睛大的诗云完成签到 ,获得积分10
21秒前
科研通AI5应助笙箫采纳,获得10
21秒前
21秒前
lio发布了新的文献求助10
22秒前
ZHAYUE发布了新的文献求助10
22秒前
22秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
TOWARD A HISTORY OF THE PALEOZOIC ASTEROIDEA (ECHINODERMATA) 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Huang's Catheter Ablation of Cardiac Arrhythmias 5th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5120563
求助须知:如何正确求助?哪些是违规求助? 4325901
关于积分的说明 13478119
捐赠科研通 4159552
什么是DOI,文献DOI怎么找? 2279551
邀请新用户注册赠送积分活动 1281381
关于科研通互助平台的介绍 1220210