Disease Bundling or Specimen Bundling? Cost- and Capacity-Efficient Strategies for Multidisease Testing with Genetic Assays

联营 计算机科学 稳健性(进化) 数学优化 可靠性工程 人工智能 数学 生物 工程类 遗传学 基因
作者
Douglas R. Bish,Ebru K. Bish,Hussein El Hajj
出处
期刊:Manufacturing & Service Operations Management [Institute for Operations Research and the Management Sciences]
卷期号:26 (1): 95-116 被引量:4
标识
DOI:10.1287/msom.2022.0296
摘要

Problem definition: Infectious disease screening can be expensive and capacity constrained. We develop cost- and capacity-efficient testing designs for multidisease screening, considering (1) multiplexing (disease bundling), where one assay detects multiple diseases using the same specimen (e.g., nasal swabs, blood), and (2) pooling (specimen bundling), where one assay is used on specimens from multiple subjects bundled in a testing pool. A testing design specifies an assay portfolio (mix of single-disease/multiplex assays) and a testing method (pooling/individual testing per assay). Methodology/results: We develop novel models for the nonlinear, combinatorial multidisease testing design problem: a deterministic model and a distribution-free, robust variation, which both generate Pareto frontiers for cost- and capacity-efficient designs. We characterize structural properties of optimal designs, formulate the deterministic counterpart of the robust model, and conduct a case study of respiratory diseases (including coronavirus disease 2019) with overlapping clinical presentation. Managerial implications: Key drivers of optimal designs include the assay cost function, the tester’s preference toward cost versus capacity efficiency, prevalence/coinfection rates, and for the robust model, prevalence uncertainty. When an optimal design uses multiple assays, it does so in conjunction with pooling, and it uses individual testing for at most one assay. Although prevalence uncertainty can be a design hurdle, especially for emerging or seasonal diseases, the integration of multiplexing and pooling, and the ordered partition property of optimal designs (under certain coinfection structures) serve to make the design more structurally robust to uncertainty. The robust model further increases robustness, and it is also practical as it needs only an uncertainty set around each disease prevalence. Our Pareto designs demonstrate the cost versus capacity trade-off and show that multiplexing-only or pooling-only designs need not be on the Pareto frontier. Our case study illustrates the benefits of optimally integrated designs over current practices and indicates a low price of robustness. Funding: This work was supported by the National Science Foundation [Grant 1761842]. Supplemental Material: The online appendix is available at https://doi.org/10.1287/msom.2022.0296 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Saluzi发布了新的文献求助10
刚刚
ELend完成签到,获得积分10
刚刚
研友_VZG7GZ应助木木采纳,获得10
刚刚
皮蛋瘦肉周完成签到,获得积分10
1秒前
2秒前
小华完成签到,获得积分10
3秒前
科研通AI2S应助鱼鱼采纳,获得10
3秒前
PH彭发布了新的文献求助10
3秒前
充电宝应助程爽采纳,获得10
4秒前
4秒前
4秒前
Issac01发布了新的文献求助10
5秒前
白茶完成签到,获得积分10
5秒前
6秒前
Zzy完成签到,获得积分10
6秒前
6秒前
顾矜应助周小鱼采纳,获得10
6秒前
SYLH应助勤劳的斑马采纳,获得30
6秒前
Y哦莫哦莫完成签到,获得积分10
6秒前
6秒前
林狗完成签到 ,获得积分10
7秒前
7秒前
清爽语柳完成签到,获得积分10
7秒前
8秒前
qqq发布了新的文献求助10
8秒前
8秒前
咖啡豆完成签到,获得积分10
9秒前
lll完成签到,获得积分10
9秒前
科目三应助Lizzy采纳,获得10
10秒前
11秒前
livian完成签到,获得积分20
11秒前
时尚的萝完成签到 ,获得积分10
11秒前
zhou发布了新的文献求助10
11秒前
凯云发布了新的文献求助30
12秒前
Cain完成签到,获得积分10
12秒前
善学以致用应助Tomin采纳,获得10
12秒前
subat完成签到,获得积分10
12秒前
xiaoman完成签到,获得积分10
13秒前
13秒前
eff发布了新的文献求助10
13秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009834
求助须知:如何正确求助?哪些是违规求助? 3549753
关于积分的说明 11303647
捐赠科研通 3284309
什么是DOI,文献DOI怎么找? 1810591
邀请新用户注册赠送积分活动 886367
科研通“疑难数据库(出版商)”最低求助积分说明 811406