Robust and Secure Federated Learning Against Hybrid Attacks: A Generic Architecture

计算机科学 计算机安全 客户端 明文 服务器 可扩展性 可组合性 稳健性(进化) 服务器端 建筑 威胁模型 密码学 密文 加密 分布式计算 软件部署 计算机网络 操作系统 艺术 生物化学 化学 视觉艺术 基因
作者
Xiaohan Hao,Chao Lin,Wenhan Dong,Xinyi Huang,Hui Xiong
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:19: 1576-1588 被引量:5
标识
DOI:10.1109/tifs.2023.3336521
摘要

Federated Learning (FL) enables multiple clients to collaboratively train a model without sharing their private data. However, the deployment of FL in real-world applications is vulnerable to various attacks from both malicious servers and clients. While cryptographic methods are effective in resisting server-side attacks, they undermine the capability of client-side defenses that rely on plaintext updates. Several valuable defenses targeting hybrid attacks have been devised to address this challenge, concentrating on specific client-side threats. To improve scalability, we continue this research line to introduce a generic architecture covering more client-side attacks. In this paper, we propose a general architecture to enhance client-side defenses from plaintext to ciphertext domains. This architecture not only supports the server-side defenses, but also accommodates a broader range of client-side defenses, including Norm-based, Krum-based, and Cosine-based strategies. The core of our architecture is generic detection under ciphertext, which tackles the following conflict of integrating server-side and client-side defenses. That is, the former aims to protect parameters from exposure while the latter demands plaintext updates. We prove the security of our architecture through the Universal Composability framework. Additionally, we provide a comprehensive instantiation and extensive evaluations to demonstrate the effectiveness and robustness of our approach. Our experiments show that our architecture can maintain the effectiveness of current client-side defenses when parameters are encrypted, thus effectively resisting hybrid attacks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Dou发布了新的文献求助10
1秒前
yyds给kxlybxx的求助进行了留言
4秒前
小酥饼发布了新的文献求助10
5秒前
5秒前
小二郎应助踏实语蓉采纳,获得10
6秒前
7秒前
戈惜完成签到 ,获得积分10
7秒前
7秒前
秧木完成签到,获得积分10
8秒前
Agan完成签到,获得积分10
8秒前
菠萝吹雪应助556采纳,获得30
9秒前
9秒前
FashionBoy应助俺村俺最牛采纳,获得10
10秒前
路过的发布了新的文献求助10
11秒前
温柔的尔芙关注了科研通微信公众号
11秒前
11秒前
11秒前
万能图书馆应助Vincent24S采纳,获得10
12秒前
研友_V8Qmr8发布了新的文献求助60
12秒前
ll发布了新的文献求助10
13秒前
13秒前
13秒前
14秒前
14秒前
LeeM发布了新的文献求助10
14秒前
陌路关注了科研通微信公众号
15秒前
WZH完成签到,获得积分10
15秒前
16秒前
16秒前
卷心菜发布了新的文献求助10
17秒前
汉堡包应助LeeM采纳,获得10
17秒前
17秒前
18秒前
19秒前
Akim应助曾经诗筠采纳,获得10
19秒前
bkagyin应助ZOOR采纳,获得10
19秒前
ning620发布了新的文献求助10
19秒前
奋斗绿旋发布了新的文献求助10
20秒前
mangmang发布了新的文献求助10
20秒前
21秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3476745
求助须知:如何正确求助?哪些是违规求助? 3068336
关于积分的说明 9107499
捐赠科研通 2759802
什么是DOI,文献DOI怎么找? 1514301
邀请新用户注册赠送积分活动 700193
科研通“疑难数据库(出版商)”最低求助积分说明 699379