已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

An ensemble-based serial cascaded attention network and improved variational auto encoder for breast cancer prognosis prediction using data

自编码 计算机科学 乳腺癌 深度学习 人工神经网络 人工智能 水准点(测量) 数据预处理 预处理器 循环神经网络 模式识别(心理学) 癌症 机器学习 医学 大地测量学 内科学 地理
作者
P. Vanmathi,Deepa Jose
出处
期刊:Computer Methods in Biomechanics and Biomedical Engineering [Informa]
卷期号:27 (1): 98-115 被引量:1
标识
DOI:10.1080/10255842.2023.2280883
摘要

AbstractBreast cancer is one of the most common types of cancer in women and it produces a huge amount of death rate in the world. Early recognition is lessening its impact. The early recognition of breast cancer could convince patients to receive surgical therapy, which will significantly improve the chance of restoration. This information is used by the machine learning technique to find links between them and appraise our forecasts of fresh occurrences. Later recognition of breast cancer can lead to death. An accurate prescient framework for breast cancer prediction is urgently needed in the current era. In order to accomplish the objective, an adaptive ensemble model is proposed for breast cancer prognosis prediction using data. At the initial stage, the raw data are fetched from benchmark datasets. It is then followed by data cleaning and preprocessing. Subsequently, the pre-processed data is fed into the Improved Variational Autoencoder (IVAE), where the deep features are extracted. Finally, the resultant features are given as input to the Ensemble-based Serial Cascaded Attention Network (ESCANet), which is built with Deep Temporal Convolution Network (DTCN), Bi-directional Long Short-Term Memory (BiLSTM), and Recurrent Neural Network (RNN). The effectiveness of the model is validated and compared with conventional methodologies. Therefore, the results elucidate that the proposed methodology achieves extensive results; thus, it increases the system’s efficiency.Keywords: Breast cancer prognosis predictionImproved Variational Autoencoderensemble-based serial cascaded attention networkdeep temporal convolution networkrecurrent neural network Disclosure statementNo potential conflict of interest was reported by the authors.Additional informationFundingThe author(s) reported there is no funding associated with the work featured in this article.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助夏大雨采纳,获得10
1秒前
研友_8KXkJL完成签到 ,获得积分10
2秒前
乐乐应助Elaine采纳,获得10
3秒前
一树面包人完成签到 ,获得积分10
4秒前
鳗鱼凡波发布了新的文献求助10
4秒前
科研通AI2S应助qq采纳,获得10
10秒前
zzc关闭了zzc文献求助
13秒前
14秒前
amber发布了新的文献求助10
14秒前
已秃发布了新的文献求助50
15秒前
15秒前
恢复出厂设置完成签到 ,获得积分10
18秒前
yan完成签到,获得积分10
18秒前
cnd发布了新的文献求助10
20秒前
阿志完成签到,获得积分10
24秒前
26秒前
LZHWSND完成签到,获得积分10
26秒前
28秒前
深情安青应助粗暴的万仇采纳,获得10
28秒前
Elaine发布了新的文献求助10
31秒前
xjcy应助笑点低的云朵采纳,获得10
32秒前
852应助晴天霹雳3732采纳,获得10
34秒前
37秒前
37秒前
所所应助无辜的宝马采纳,获得10
39秒前
英俊的铭应助普鲁卡因采纳,获得10
40秒前
guagua发布了新的文献求助10
41秒前
www发布了新的文献求助10
42秒前
LAN发布了新的文献求助10
42秒前
yue完成签到 ,获得积分10
43秒前
丘比特应助inRe采纳,获得10
44秒前
harmony完成签到 ,获得积分10
44秒前
44秒前
海雅完成签到 ,获得积分10
45秒前
三点水完成签到,获得积分20
45秒前
agony完成签到,获得积分20
46秒前
Endlessway应助毅诚菌采纳,获得10
46秒前
49秒前
脑洞疼应助七哥采纳,获得10
51秒前
普鲁卡因发布了新的文献求助10
53秒前
高分求助中
求国内可以测试或购买Loschmidt cell(或相同原理器件)的机构信息 1000
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
Women in Power in Post-Communist Parliaments 450
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3219496
求助须知:如何正确求助?哪些是违规求助? 2868323
关于积分的说明 8160534
捐赠科研通 2535378
什么是DOI,文献DOI怎么找? 1367766
科研通“疑难数据库(出版商)”最低求助积分说明 645094
邀请新用户注册赠送积分活动 618424