An ensemble-based serial cascaded attention network and improved variational auto encoder for breast cancer prognosis prediction using data

自编码 计算机科学 乳腺癌 深度学习 人工神经网络 人工智能 水准点(测量) 数据预处理 预处理器 循环神经网络 模式识别(心理学) 癌症 机器学习 医学 大地测量学 内科学 地理
作者
P. Vanmathi,Deepa Jose
出处
期刊:Computer Methods in Biomechanics and Biomedical Engineering [Informa]
卷期号:27 (1): 98-115 被引量:1
标识
DOI:10.1080/10255842.2023.2280883
摘要

AbstractBreast cancer is one of the most common types of cancer in women and it produces a huge amount of death rate in the world. Early recognition is lessening its impact. The early recognition of breast cancer could convince patients to receive surgical therapy, which will significantly improve the chance of restoration. This information is used by the machine learning technique to find links between them and appraise our forecasts of fresh occurrences. Later recognition of breast cancer can lead to death. An accurate prescient framework for breast cancer prediction is urgently needed in the current era. In order to accomplish the objective, an adaptive ensemble model is proposed for breast cancer prognosis prediction using data. At the initial stage, the raw data are fetched from benchmark datasets. It is then followed by data cleaning and preprocessing. Subsequently, the pre-processed data is fed into the Improved Variational Autoencoder (IVAE), where the deep features are extracted. Finally, the resultant features are given as input to the Ensemble-based Serial Cascaded Attention Network (ESCANet), which is built with Deep Temporal Convolution Network (DTCN), Bi-directional Long Short-Term Memory (BiLSTM), and Recurrent Neural Network (RNN). The effectiveness of the model is validated and compared with conventional methodologies. Therefore, the results elucidate that the proposed methodology achieves extensive results; thus, it increases the system’s efficiency.Keywords: Breast cancer prognosis predictionImproved Variational Autoencoderensemble-based serial cascaded attention networkdeep temporal convolution networkrecurrent neural network Disclosure statementNo potential conflict of interest was reported by the authors.Additional informationFundingThe author(s) reported there is no funding associated with the work featured in this article.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
Xx.完成签到,获得积分10
3秒前
星辰大海应助内向凌兰采纳,获得10
3秒前
3秒前
wuzhizhiya完成签到,获得积分10
4秒前
5秒前
rudjs发布了新的文献求助10
5秒前
8秒前
Ava应助何糖采纳,获得10
8秒前
桐桐应助美丽的芷烟采纳,获得10
8秒前
野子完成签到,获得积分10
9秒前
情怀应助小D采纳,获得30
10秒前
yuan发布了新的文献求助10
10秒前
berry发布了新的文献求助10
11秒前
11秒前
淡淡采白发布了新的文献求助10
12秒前
思源应助勤恳慕蕊采纳,获得10
12秒前
知犯何逆完成签到 ,获得积分10
13秒前
啊哈完成签到,获得积分10
13秒前
14秒前
14秒前
Draven完成签到 ,获得积分10
14秒前
tmpstlml发布了新的文献求助10
15秒前
张红梨完成签到,获得积分10
15秒前
迷迷完成签到,获得积分20
16秒前
16秒前
科研通AI2S应助chen采纳,获得10
17秒前
穿山甲坐飞机完成签到 ,获得积分10
17秒前
18秒前
美丽的芷烟给美丽的芷烟的求助进行了留言
18秒前
科研通AI5应助经年采纳,获得10
18秒前
18秒前
勤劳晓亦应助木头人采纳,获得10
19秒前
科研通AI5应助想瘦的海豹采纳,获得10
19秒前
20秒前
科研通AI5应助adazbd采纳,获得10
20秒前
bkagyin应助皮皮桂采纳,获得10
20秒前
21秒前
重要的哈密瓜完成签到 ,获得积分10
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808