An ensemble-based serial cascaded attention network and improved variational auto encoder for breast cancer prognosis prediction using data

自编码 计算机科学 乳腺癌 深度学习 人工神经网络 人工智能 水准点(测量) 数据预处理 预处理器 循环神经网络 模式识别(心理学) 癌症 机器学习 医学 大地测量学 内科学 地理
作者
P. Vanmathi,Deepa Jose
出处
期刊:Computer Methods in Biomechanics and Biomedical Engineering [Taylor & Francis]
卷期号:27 (1): 98-115 被引量:1
标识
DOI:10.1080/10255842.2023.2280883
摘要

AbstractBreast cancer is one of the most common types of cancer in women and it produces a huge amount of death rate in the world. Early recognition is lessening its impact. The early recognition of breast cancer could convince patients to receive surgical therapy, which will significantly improve the chance of restoration. This information is used by the machine learning technique to find links between them and appraise our forecasts of fresh occurrences. Later recognition of breast cancer can lead to death. An accurate prescient framework for breast cancer prediction is urgently needed in the current era. In order to accomplish the objective, an adaptive ensemble model is proposed for breast cancer prognosis prediction using data. At the initial stage, the raw data are fetched from benchmark datasets. It is then followed by data cleaning and preprocessing. Subsequently, the pre-processed data is fed into the Improved Variational Autoencoder (IVAE), where the deep features are extracted. Finally, the resultant features are given as input to the Ensemble-based Serial Cascaded Attention Network (ESCANet), which is built with Deep Temporal Convolution Network (DTCN), Bi-directional Long Short-Term Memory (BiLSTM), and Recurrent Neural Network (RNN). The effectiveness of the model is validated and compared with conventional methodologies. Therefore, the results elucidate that the proposed methodology achieves extensive results; thus, it increases the system’s efficiency.Keywords: Breast cancer prognosis predictionImproved Variational Autoencoderensemble-based serial cascaded attention networkdeep temporal convolution networkrecurrent neural network Disclosure statementNo potential conflict of interest was reported by the authors.Additional informationFundingThe author(s) reported there is no funding associated with the work featured in this article.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Vivian发布了新的文献求助10
刚刚
开心的寄灵完成签到 ,获得积分10
1秒前
晚棠发布了新的文献求助10
2秒前
2秒前
4秒前
4秒前
6秒前
surain发布了新的文献求助30
6秒前
万能图书馆应助1111采纳,获得10
7秒前
万能图书馆应助专注人生采纳,获得10
7秒前
薛清棵完成签到 ,获得积分10
7秒前
小蛇玩完成签到,获得积分10
8秒前
9秒前
10秒前
10秒前
carlitos发布了新的文献求助10
10秒前
PWG完成签到,获得积分10
10秒前
乐枳发布了新的文献求助10
10秒前
10秒前
隐形曼青应助独特靖巧采纳,获得10
11秒前
慕青应助典雅的苗条采纳,获得10
13秒前
15秒前
我的miemie应助杨h采纳,获得20
15秒前
量子星尘发布了新的文献求助10
15秒前
15秒前
z21完成签到,获得积分10
16秒前
超帅的访云完成签到,获得积分10
16秒前
17秒前
18秒前
20秒前
田忌赛马发布了新的文献求助10
21秒前
小二郎应助Vivian采纳,获得10
21秒前
大傻春完成签到 ,获得积分10
22秒前
孙朱珠发布了新的文献求助50
23秒前
独特靖巧发布了新的文献求助10
23秒前
归尘发布了新的文献求助10
27秒前
TAZIA发布了新的文献求助10
27秒前
27秒前
田忌赛马完成签到,获得积分10
28秒前
28秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954414
求助须知:如何正确求助?哪些是违规求助? 3500373
关于积分的说明 11099295
捐赠科研通 3230866
什么是DOI,文献DOI怎么找? 1786171
邀请新用户注册赠送积分活动 869840
科研通“疑难数据库(出版商)”最低求助积分说明 801689