An ensemble-based serial cascaded attention network and improved variational auto encoder for breast cancer prognosis prediction using data

自编码 计算机科学 乳腺癌 深度学习 人工神经网络 人工智能 水准点(测量) 数据预处理 预处理器 循环神经网络 模式识别(心理学) 癌症 机器学习 医学 大地测量学 内科学 地理
作者
P. Vanmathi,Deepa Jose
出处
期刊:Computer Methods in Biomechanics and Biomedical Engineering [Informa]
卷期号:27 (1): 98-115 被引量:1
标识
DOI:10.1080/10255842.2023.2280883
摘要

AbstractBreast cancer is one of the most common types of cancer in women and it produces a huge amount of death rate in the world. Early recognition is lessening its impact. The early recognition of breast cancer could convince patients to receive surgical therapy, which will significantly improve the chance of restoration. This information is used by the machine learning technique to find links between them and appraise our forecasts of fresh occurrences. Later recognition of breast cancer can lead to death. An accurate prescient framework for breast cancer prediction is urgently needed in the current era. In order to accomplish the objective, an adaptive ensemble model is proposed for breast cancer prognosis prediction using data. At the initial stage, the raw data are fetched from benchmark datasets. It is then followed by data cleaning and preprocessing. Subsequently, the pre-processed data is fed into the Improved Variational Autoencoder (IVAE), where the deep features are extracted. Finally, the resultant features are given as input to the Ensemble-based Serial Cascaded Attention Network (ESCANet), which is built with Deep Temporal Convolution Network (DTCN), Bi-directional Long Short-Term Memory (BiLSTM), and Recurrent Neural Network (RNN). The effectiveness of the model is validated and compared with conventional methodologies. Therefore, the results elucidate that the proposed methodology achieves extensive results; thus, it increases the system’s efficiency.Keywords: Breast cancer prognosis predictionImproved Variational Autoencoderensemble-based serial cascaded attention networkdeep temporal convolution networkrecurrent neural network Disclosure statementNo potential conflict of interest was reported by the authors.Additional informationFundingThe author(s) reported there is no funding associated with the work featured in this article.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陈梦发布了新的文献求助10
刚刚
1秒前
1秒前
Alice发布了新的文献求助10
1秒前
幻翎应助曾经不言采纳,获得30
1秒前
1秒前
Aman发布了新的文献求助10
2秒前
2秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
香菜丸子发布了新的文献求助30
2秒前
2秒前
3秒前
4秒前
4秒前
4秒前
celinewu完成签到,获得积分10
5秒前
Aippan完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
6秒前
田様应助呆萌太清采纳,获得20
6秒前
上guanguan完成签到,获得积分10
7秒前
哭泣战斗机应助kawaiikid采纳,获得10
7秒前
香蕉君达完成签到,获得积分10
7秒前
7秒前
我行我素完成签到 ,获得积分10
7秒前
不会写论文的小蜜蜂完成签到 ,获得积分10
8秒前
8秒前
8秒前
读书明智发布了新的文献求助10
8秒前
脆脆鲨发布了新的文献求助10
8秒前
8秒前
8秒前
起床了吗发布了新的文献求助10
8秒前
lzj发布了新的文献求助10
8秒前
zsy完成签到,获得积分10
9秒前
9秒前
zyyy发布了新的文献求助10
9秒前
汉堡包应助heiye采纳,获得10
10秒前
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719050
求助须知:如何正确求助?哪些是违规求助? 5254852
关于积分的说明 15287660
捐赠科研通 4869006
什么是DOI,文献DOI怎么找? 2614559
邀请新用户注册赠送积分活动 1564435
关于科研通互助平台的介绍 1521807