Prediction model of atrial fibrillation recurrence after Cox-Maze IV procedure in patients with chronic valvular disease and atrial fibrillation based on machine learning algorithm.

心房颤动 医学 逻辑回归 机器学习 人工智能 决策树 支持向量机 内科学 比例危险模型 接收机工作特性 瓣膜性心脏病 算法 计算机科学
作者
Zenan Jiang,Long Song,Chunshui Liang,Hao Zhang,Liming Liu
出处
期刊:PubMed 卷期号:48 (7): 995-1007
标识
DOI:10.11817/j.issn.1672-7347.2023.230018
摘要

Atrial fibrillation (AF) is a prevalent cardiac arrhythmia, and Cox-maze IV procedure (CMP-IV) is a commonly employed surgical technique for its treatment. Currently, the risk factors for atrial fibrillation recurrence following CMP-IV remain relatively unclear. In recent years, machine learning algorithms have demonstrated immense potential in enhancing diagnostic accuracy, predicting patient outcomes, and devising personalized treatment strategies. This study aims to evaluate the efficacy of CMP-IV on treating chronic valvular disease with AF, utilize machine learning algorithms to identify potential risk factors for AF recurrence, construct a CMP-IV postoperative AF recurrence prediction model.A total of 555 patients with AF combined with chronic valvular disease, who met the criteria, were enrolled from January 2012 to December 2019 from the Second Xiangya Hospital of Central South University and the Affiliated Xinqiao Hospital of the Army Medical University, with an average age of (57.95±7.96) years, including an AF recurrence group (n=117) and an AF non-recurrence group (n=438). Kaplan-Meier method was used to analyze the sinus rhythm maintenance rate, and 9 machine learning models were developed including random forest, gradient boosting decision tree (GBDT), extreme gradient boosting (XGBoost), bootstrap aggregating, logistic regression, categorical boosting (CatBoost), support vector machine, adaptive boosting, and multi-layer perceptron. Five-fold cross-validation and model evaluation indicators [including F1 score, accuracy, precision, recall, and area under the curve (AUC)] were used to evaluate the performance of the models. The 2 best-performing models were selected for further analyze, including feature importance evaluation and Shapley additive explanations (SHAP) analysis, identifying AF recurrence risk factors, and building an AF recurrence risk prediction model.The 5-year sinus rhythm maintenance rate for the patients was 82.13% (95% CI 78.51% to 85.93%). Among the 9 machine learning models, XGBoost and CatBoost models performed best, with the AUC of 0.768 (95% CI 0.742 to 0.786) and 0.762 (95% CI 0.723 to 0.801), respectively. Feature importance and SHAP analysis showed that duration of AF, preoperative left ventricular ejection fraction, postoperative heart rhythm, preoperative neutrophil-to-lymphocyte ratio, preoperative left atrial diameter, preoperative heart rate, and preoperative white blood cell were important factors for AF recurrence. Conclusion: Machine learning algorithms can be effectively used to identify potential risk factors for AF recurrence after CMP-IV. This study successfuly constructs 2 prediction model which may enhance individualized treatment plans.目的: 心房颤动(以下简称“房颤”)是一种常见的心律失常,Cox迷宫IV手术是外科治疗房颤的常用手术方法,目前Cox迷宫IV手术后患者房颤复发的风险因素尚不明确。近年来,机器学习算法在提高诊断准确率、预测患者预后和个性化治疗策略方面显示出巨大潜力。本研究旨在评估Cox迷宫IV手术治疗慢性瓣膜病合并心房颤动患者的疗效,使用机器学习算法识别心房颤动复发的潜在风险因素,构建Cox迷宫IV手术后房颤复发预测模型。方法: 回顾性纳入2012年1月至2019年12月中南大学湘雅二医院和陆军军医大学附属新桥医院符合条件的慢性瓣膜病合并房颤且行瓣膜手术合并Cox迷宫IV手术患者555例,年龄为(57.95±7.96)岁,根据患者术后房颤复发情况分为房颤复发组(n=117)和房颤未复发组(n=438)。采用Kaplan-Meier法分析窦性心律维持率,构建9个机器学习模型,包括随机森林、梯度提升决策树(gradient boosting decision tree,GBDT)、极限梯度提升(extreme gradient boosting,XGBoost)、引导聚集算法、logistic回归、类别提升(categorical boosting,CatBoost)、支持向量机、自适应增强和多层感知机。使用五折交叉验证和模型评估指标评估模型性能,评估指标包括准确度、精确度、召回率、F1分数和曲线下面积(area under the curve,AUC),筛选出2个表现最佳的模型进行进一步分析[包括特征重要性和沙普利加和解释(Shapley additive explanations,SHAP)]来识别房颤复发风险因素,以此构建房颤复发风险预测模型。结果: 患者术后5年窦性心律维持率为82.13%(95% CI 78.51%~85.93%)。9个机器学习模型中,XGBoost和CatBoost模型表现最好,AUC分别为0.768(95% CI 0.742~0.786)和0.762(95% CI 0.723~0.801),且在9个模型中有较高的准确率、精确率、召回率和F1值。特征重要性和SHAP分析显示房颤病史时长、术前左室射血分数、术后心律、术前左心房内径、术前中性粒细胞与淋巴细胞比值、术前心率和术前白细胞计数等是房颤复发的重要因素。结论: Cox迷宫IV手术治疗房颤具有良好的窦性心律维持率,本研究通过机器学习算法成功识别多种Cox迷宫IV手术后房颤复发风险因素,成功构建2个房颤复发风险预测模型,可能有助于临床决策和优化房颤的个体化手术管理。.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟花应助椰子树采纳,获得10
1秒前
景觅波完成签到,获得积分10
2秒前
nenoaowu发布了新的文献求助10
2秒前
多久上课发布了新的文献求助10
2秒前
jenningseastera应助what采纳,获得30
3秒前
GeZhang完成签到,获得积分10
3秒前
4秒前
小明应助科研通管家采纳,获得10
4秒前
4秒前
orixero应助科研通管家采纳,获得10
4秒前
4秒前
思源应助科研通管家采纳,获得10
5秒前
飘逸的傲霜完成签到 ,获得积分10
5秒前
今后应助科研通管家采纳,获得10
5秒前
桐桐应助科研通管家采纳,获得10
5秒前
香蕉觅云应助科研通管家采纳,获得10
5秒前
小马甲应助科研通管家采纳,获得10
5秒前
JamesPei应助科研通管家采纳,获得10
5秒前
ld发布了新的文献求助10
5秒前
5秒前
Orange应助科研通管家采纳,获得10
5秒前
研友_VZG7GZ应助科研通管家采纳,获得10
5秒前
一一发布了新的文献求助10
6秒前
浮游应助科研通管家采纳,获得30
6秒前
CipherSage应助科研通管家采纳,获得10
6秒前
桐桐应助科研通管家采纳,获得10
6秒前
6秒前
8秒前
小呆呆完成签到,获得积分10
8秒前
杨金蓉发布了新的文献求助20
9秒前
Owen应助hiker采纳,获得10
9秒前
10秒前
薛华倩发布了新的文献求助10
13秒前
14秒前
GingerF应助Aggie采纳,获得60
16秒前
谨慎的映阳完成签到,获得积分10
16秒前
17秒前
单薄的砖家完成签到,获得积分10
18秒前
路漫漫发布了新的文献求助10
18秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Research Handbook on Law and Political Economy Second Edition 398
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4538576
求助须知:如何正确求助?哪些是违规求助? 3973016
关于积分的说明 12307581
捐赠科研通 3639826
什么是DOI,文献DOI怎么找? 2004103
邀请新用户注册赠送积分活动 1039548
科研通“疑难数据库(出版商)”最低求助积分说明 928849