A lane-changing trajectory re-planning method considering conflicting traffic scenarios

计算机科学 弹道 平面图(考古学) 功能(生物学) 流量(计算机网络) 模拟 计算机安全 物理 考古 天文 进化生物学 生物 历史
作者
Haifeng Du,Yu Sun,Yongjun Pan,Zhixiong Li,Patrick Siarry
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:127: 107264-107264 被引量:2
标识
DOI:10.1016/j.engappai.2023.107264
摘要

An essential aspect of intelligent driving systems is the automatic lane-changing function. However, in real-world traffic situations, the initially planned lane-changing trajectory can become hazardous due to the intricate and unpredictable nature of human driving behavior. Based on the assumption that vehicles have risks during lane-changing, an integrated methodology is proposed to assess the hazards associated with road conditions in real-time and to quickly adjust the predetermined vehicle trajectory, if deemed necessary, to mitigate the risks of conflicting lane changes. Vehicles are encouraged to adhere to lane changing behavior by adjusting their trajectory, aiming to enhance traffic efficiency. Instead of immediately abandoning lane changing, vehicles should strategically assess the situation before making decisions. Initially, an analysis of variables influencing re-planning is conducted, determining the circumstances conducive to maintaining lane-changing behavior. Subsequently, a trajectory re-planning module is introduced, facilitated by two neural network data-fitting models, allowing real-time performance. Finally, a series of numerical experiments confirm that the devised method effectively guides autonomous driving through quick and secure lane change re-planning in high-risk traffic environments. The proposed novel approach extends the capacity to target traffic flow gaps and dynamically re-plan lane switching motivations, ensuring the vehicle can persist in lane-changing rather than reverting to the original lane.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
平常冬云完成签到,获得积分10
刚刚
xinxin发布了新的文献求助10
1秒前
kkk发布了新的文献求助10
2秒前
2秒前
科研虫儿发布了新的文献求助10
2秒前
shiran完成签到,获得积分20
2秒前
Zz完成签到,获得积分10
3秒前
nozero应助11111采纳,获得100
4秒前
4秒前
平常冬云发布了新的文献求助10
5秒前
芜湖完成签到,获得积分10
5秒前
5秒前
6秒前
Nires完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
terrell完成签到,获得积分10
7秒前
7秒前
稳重的寻琴完成签到,获得积分10
9秒前
9秒前
123发布了新的文献求助10
9秒前
10秒前
王军鹏发布了新的文献求助10
10秒前
无奈的牛马完成签到,获得积分10
10秒前
芜湖发布了新的文献求助10
10秒前
凉皮儿完成签到,获得积分10
10秒前
111发布了新的文献求助10
11秒前
13秒前
13秒前
13秒前
13秒前
绍兴大学发布了新的文献求助10
13秒前
15秒前
HRB发布了新的文献求助10
15秒前
一株多肉发布了新的文献求助30
15秒前
16秒前
17秒前
南浔发布了新的文献求助10
17秒前
丘比特应助YJ888采纳,获得10
18秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Munson, Young, and Okiishi’s Fundamentals of Fluid Mechanics 9 edition problem solution manual (metric) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3748428
求助须知:如何正确求助?哪些是违规求助? 3291391
关于积分的说明 10072942
捐赠科研通 3007152
什么是DOI,文献DOI怎么找? 1651507
邀请新用户注册赠送积分活动 786406
科研通“疑难数据库(出版商)”最低求助积分说明 751719