Data‐Driven Fine Element Tuning of Halide Double Perovskite for Enhanced Photoluminescence

光致发光 材料科学 卤化物 钙钛矿(结构) 分析化学(期刊) 纳米技术 光电子学 化学工程 无机化学 化学 色谱法 工程类
作者
Lingjun Wu,Zijian Chen,Zhongcheng Yuan,Bobin Wu,Shaohui Liu,Zixuan Wang,Jonathan P. Mailoa,Chenru Duan,Hao Huang,Chang‐Yu Hsieh,Xue‐Feng Yu,Haitao Zhao
出处
期刊:Advanced Optical Materials [Wiley]
卷期号:12 (8) 被引量:2
标识
DOI:10.1002/adom.202301245
摘要

Abstract Element tuning of targeted materials and obtaining the optimal synthesis recipe are major goals for many material scientists. However, this is often limited by conventional trial‐and‐error procedures, which are time‐consuming and labor‐intensive. In this work, fine element tuning of halide double perovskite Cs 2 Na x Ag 1‐x In y Bi 1‐y Cl 6 is conducted by performing a data‐driven investigation combining high‐throughput experiments with machine learning (ML). A positive correlation between the more accessible R value in emission RGB values (the intensities of the red/green/blue primary colors) and photoluminescence intensity is revealed, and over a thousand R values of the Cs 2 Na x Ag 1‐x In y Bi 1‐y Cl 6 crystals synthesized with different additives and element compositions are collected. More importantly, the volume ratios of Na + /Ag + (V Na : V Ag ) and Bi 3+ /In 3+ (V Bi : V In ) with the corresponding R values are correlated through ML, and the synergistic regulation of the two ion pairs is revealed. A possible correlation between R and XRD is also proposed. Finally, different emission intensities of LED beads coated with Cs 2 Na x Ag 1‐x In y Bi 1‐y Cl 6 synthesized using parameters obtained from ML are demonstrated, and an emission enhancement of ≈50 times is observed between the brightest and dimmest LEDs. This work illustrates that data‐driven investigation helps guide material synthesis and will significantly reduce the workload for developing novel materials, especially for complex compositions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
5秒前
8秒前
8秒前
量子星尘发布了新的文献求助30
10秒前
荔枝吖发布了新的文献求助10
11秒前
14秒前
jiuge完成签到 ,获得积分10
14秒前
鸡爪子关注了科研通微信公众号
14秒前
15秒前
16秒前
樛木完成签到 ,获得积分10
18秒前
婷婷发布了新的文献求助10
18秒前
18秒前
18秒前
乐乐应助追忆采纳,获得10
18秒前
banban完成签到 ,获得积分10
19秒前
rilin发布了新的文献求助10
21秒前
NoobMasterZYF发布了新的文献求助10
21秒前
yang发布了新的文献求助10
22秒前
22秒前
23秒前
23秒前
24秒前
小马甲应助温柔的海安采纳,获得10
25秒前
优雅的沛春完成签到 ,获得积分10
27秒前
x971017完成签到,获得积分10
27秒前
28秒前
lily发布了新的文献求助10
28秒前
乖猫要努力应助李锐采纳,获得10
29秒前
ddj完成签到 ,获得积分10
29秒前
斯文明杰发布了新的文献求助10
29秒前
29秒前
More完成签到,获得积分20
30秒前
婷婷完成签到,获得积分10
30秒前
33秒前
YDX发布了新的文献求助10
33秒前
CipherSage应助SJY采纳,获得10
34秒前
NoobMasterZYF完成签到,获得积分10
34秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959179
求助须知:如何正确求助?哪些是违规求助? 3505472
关于积分的说明 11124101
捐赠科研通 3237190
什么是DOI,文献DOI怎么找? 1789003
邀请新用户注册赠送积分活动 871507
科研通“疑难数据库(出版商)”最低求助积分说明 802824