Data‐Driven Fine Element Tuning of Halide Double Perovskite for Enhanced Photoluminescence

光致发光 材料科学 卤化物 钙钛矿(结构) 分析化学(期刊) 纳米技术 光电子学 化学工程 无机化学 化学 色谱法 工程类
作者
Lingjun Wu,Zijian Chen,Zhongcheng Yuan,Bobin Wu,Shaohui Liu,Zixuan Wang,Jonathan P. Mailoa,Chenru Duan,Hao Huang,Chang‐Yu Hsieh,Xue‐Feng Yu,Haitao Zhao
出处
期刊:Advanced Optical Materials [Wiley]
卷期号:12 (8) 被引量:2
标识
DOI:10.1002/adom.202301245
摘要

Abstract Element tuning of targeted materials and obtaining the optimal synthesis recipe are major goals for many material scientists. However, this is often limited by conventional trial‐and‐error procedures, which are time‐consuming and labor‐intensive. In this work, fine element tuning of halide double perovskite Cs 2 Na x Ag 1‐x In y Bi 1‐y Cl 6 is conducted by performing a data‐driven investigation combining high‐throughput experiments with machine learning (ML). A positive correlation between the more accessible R value in emission RGB values (the intensities of the red/green/blue primary colors) and photoluminescence intensity is revealed, and over a thousand R values of the Cs 2 Na x Ag 1‐x In y Bi 1‐y Cl 6 crystals synthesized with different additives and element compositions are collected. More importantly, the volume ratios of Na + /Ag + (V Na : V Ag ) and Bi 3+ /In 3+ (V Bi : V In ) with the corresponding R values are correlated through ML, and the synergistic regulation of the two ion pairs is revealed. A possible correlation between R and XRD is also proposed. Finally, different emission intensities of LED beads coated with Cs 2 Na x Ag 1‐x In y Bi 1‐y Cl 6 synthesized using parameters obtained from ML are demonstrated, and an emission enhancement of ≈50 times is observed between the brightest and dimmest LEDs. This work illustrates that data‐driven investigation helps guide material synthesis and will significantly reduce the workload for developing novel materials, especially for complex compositions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
奥特曼的小裙子完成签到,获得积分10
1秒前
汉堡包应助旺仔糖采纳,获得10
1秒前
glemy完成签到 ,获得积分20
1秒前
2秒前
4秒前
量子星尘发布了新的文献求助50
4秒前
完美世界应助ddddd采纳,获得10
5秒前
5秒前
8秒前
lejunia发布了新的文献求助10
8秒前
IFYK完成签到 ,获得积分10
10秒前
Yt完成签到 ,获得积分10
11秒前
wj发布了新的文献求助10
12秒前
浮游应助快乐小子采纳,获得10
12秒前
结实采枫发布了新的文献求助20
13秒前
敬老院1号应助Nan采纳,获得200
14秒前
14秒前
旺仔糖完成签到,获得积分10
14秒前
微笑的忆枫完成签到 ,获得积分10
14秒前
wanci应助starwan采纳,获得10
15秒前
完美世界应助熏同学采纳,获得10
15秒前
15秒前
ToCell发布了新的文献求助30
16秒前
zq完成签到 ,获得积分10
17秒前
19秒前
19秒前
19秒前
20秒前
Sarahminn发布了新的文献求助80
20秒前
莱昂纳多的李完成签到,获得积分10
21秒前
21秒前
NexusExplorer应助苏眠月采纳,获得10
22秒前
乌冬面发布了新的文献求助20
22秒前
qyn1234566发布了新的文献求助10
23秒前
23秒前
完美世界应助科研通管家采纳,获得10
23秒前
23秒前
Hilda007应助科研通管家采纳,获得10
24秒前
科研通AI6应助科研通管家采纳,获得10
24秒前
wop111应助科研通管家采纳,获得20
24秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
Huang's Catheter Ablation of Cardiac Arrhythmias 5th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5125878
求助须知:如何正确求助?哪些是违规求助? 4329554
关于积分的说明 13491294
捐赠科研通 4164468
什么是DOI,文献DOI怎么找? 2282962
邀请新用户注册赠送积分活动 1284016
关于科研通互助平台的介绍 1223406