亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Diagnosis of Alzheimer’s disease by joining dual attention CNN and MLP based on structural MRIs, clinical and genetic data

可解释性 计算机科学 卷积神经网络 人工智能 神经影像学 多层感知器 模式识别(心理学) 人工神经网络 机器学习 医学 精神科
作者
Yan-Rui Qiang,Shao‐Wu Zhang,Jiani Li,Yan Li,Qin-Yi Zhou
出处
期刊:Artificial Intelligence in Medicine [Elsevier]
卷期号:145: 102678-102678 被引量:18
标识
DOI:10.1016/j.artmed.2023.102678
摘要

Alzheimer’s disease (AD) is an irreversible central nervous degenerative disease, while mild cognitive impairment (MCI) is a precursor state of AD. Accurate early diagnosis of AD is conducive to the prevention and early intervention treatment of AD. Although some computational methods have been developed for AD diagnosis, most employ only neuroimaging, ignoring other data (e.g., genetic, clinical) that may have potential disease information. In addition, the results of some methods lack interpretability. In this work, we proposed a novel method (called DANMLP) of joining dual attention convolutional neural network (CNN) and multilayer perceptron (MLP) for computer-aided AD diagnosis by integrating multi-modality data of the structural magnetic resonance imaging (sMRI), clinical data (i.e., demographics, neuropsychology), and APOE genetic data. Our DANMLP consists of four primary components: (1) the Patch-CNN for extracting the image characteristics from each local patch, (2) the position self-attention block for capturing the dependencies between features within a patch, (3) the channel self-attention block for capturing dependencies of inter-patch features, (4) two MLP networks for extracting the clinical features and outputting the AD classification results, respectively. Compared with other state-of-the-art methods in the 5CV test, DANMLP achieves 93% and 82.4% classification accuracy for the AD vs. MCI and MCI vs. NC tasks on the ADNI database, which is 0.2%∼15.2% and 3.4%∼26.8% higher than that of other five methods, respectively. The individualized visualization of focal areas can also help clinicians in the early diagnosis of AD. These results indicate that DANMLP can be effectively used for diagnosing AD and MCI patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lezbj99完成签到,获得积分10
3秒前
赤恩应助tuanheqi采纳,获得20
5秒前
Criminology34应助科研通管家采纳,获得10
7秒前
Criminology34应助科研通管家采纳,获得10
7秒前
7秒前
Criminology34应助科研通管家采纳,获得10
7秒前
TXZ06完成签到,获得积分10
28秒前
SciGPT应助wy采纳,获得10
41秒前
Loney完成签到 ,获得积分10
47秒前
52秒前
威武灵阳完成签到,获得积分10
54秒前
wy发布了新的文献求助10
57秒前
小白加油完成签到 ,获得积分10
58秒前
咎不可完成签到,获得积分10
1分钟前
NexusExplorer应助斯可采纳,获得10
1分钟前
jjx1005完成签到 ,获得积分10
1分钟前
知弈否发布了新的文献求助10
1分钟前
脱锦涛完成签到 ,获得积分10
1分钟前
flyinthesky完成签到,获得积分10
1分钟前
斯文的访烟完成签到,获得积分10
1分钟前
lige完成签到 ,获得积分10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Orange应助科研通管家采纳,获得10
2分钟前
斯可完成签到,获得积分10
2分钟前
2分钟前
Hello应助迷你的醉薇采纳,获得10
2分钟前
斯可发布了新的文献求助10
2分钟前
张晓祁完成签到,获得积分10
2分钟前
Hello应助俏皮芷蕊采纳,获得10
2分钟前
yueying完成签到,获得积分10
2分钟前
Tumumu完成签到,获得积分10
2分钟前
2分钟前
2分钟前
哲别发布了新的文献求助10
2分钟前
赘婿应助xiaoyu采纳,获得10
2分钟前
天天快乐应助哲别采纳,获得10
2分钟前
2分钟前
搜集达人应助墨痕采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5568162
求助须知:如何正确求助?哪些是违规求助? 4652598
关于积分的说明 14701881
捐赠科研通 4594488
什么是DOI,文献DOI怎么找? 2521010
邀请新用户注册赠送积分活动 1492847
关于科研通互助平台的介绍 1463696