Diagnosis of Alzheimer’s disease by joining dual attention CNN and MLP based on structural MRIs, clinical and genetic data

可解释性 计算机科学 卷积神经网络 人工智能 神经影像学 多层感知器 模式识别(心理学) 人工神经网络 机器学习 医学 精神科
作者
Yan-Rui Qiang,Shao‐Wu Zhang,Jiani Li,Yan Li,Qin-Yi Zhou
出处
期刊:Artificial Intelligence in Medicine [Elsevier]
卷期号:145: 102678-102678 被引量:18
标识
DOI:10.1016/j.artmed.2023.102678
摘要

Alzheimer’s disease (AD) is an irreversible central nervous degenerative disease, while mild cognitive impairment (MCI) is a precursor state of AD. Accurate early diagnosis of AD is conducive to the prevention and early intervention treatment of AD. Although some computational methods have been developed for AD diagnosis, most employ only neuroimaging, ignoring other data (e.g., genetic, clinical) that may have potential disease information. In addition, the results of some methods lack interpretability. In this work, we proposed a novel method (called DANMLP) of joining dual attention convolutional neural network (CNN) and multilayer perceptron (MLP) for computer-aided AD diagnosis by integrating multi-modality data of the structural magnetic resonance imaging (sMRI), clinical data (i.e., demographics, neuropsychology), and APOE genetic data. Our DANMLP consists of four primary components: (1) the Patch-CNN for extracting the image characteristics from each local patch, (2) the position self-attention block for capturing the dependencies between features within a patch, (3) the channel self-attention block for capturing dependencies of inter-patch features, (4) two MLP networks for extracting the clinical features and outputting the AD classification results, respectively. Compared with other state-of-the-art methods in the 5CV test, DANMLP achieves 93% and 82.4% classification accuracy for the AD vs. MCI and MCI vs. NC tasks on the ADNI database, which is 0.2%∼15.2% and 3.4%∼26.8% higher than that of other five methods, respectively. The individualized visualization of focal areas can also help clinicians in the early diagnosis of AD. These results indicate that DANMLP can be effectively used for diagnosing AD and MCI patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yznfly应助科研通管家采纳,获得20
刚刚
BowieHuang应助科研通管家采纳,获得10
刚刚
刚刚
yznfly应助科研通管家采纳,获得20
刚刚
刚刚
刚刚
刚刚
刚刚
刚刚
刚刚
汉堡包应助科研通管家采纳,获得10
刚刚
脑洞疼应助科研通管家采纳,获得10
刚刚
刚刚
小马甲应助科研通管家采纳,获得10
刚刚
脑洞疼应助科研通管家采纳,获得10
刚刚
刚刚
小马甲应助科研通管家采纳,获得10
刚刚
刚刚
1秒前
1秒前
1秒前
1秒前
Bystander完成签到 ,获得积分10
1秒前
YUUNY完成签到,获得积分20
2秒前
木马木马完成签到,获得积分10
3秒前
3秒前
Akim应助叫我富婆儿采纳,获得10
4秒前
赘婿应助小蟹采纳,获得10
5秒前
5秒前
斯文败类应助phil采纳,获得10
7秒前
Jiaox发布了新的文献求助10
8秒前
8秒前
宫小小心完成签到,获得积分10
8秒前
李大白完成签到 ,获得积分10
9秒前
量子星尘发布了新的文献求助30
10秒前
丘比特应助一枚小汤圆采纳,获得10
10秒前
11秒前
YUMI发布了新的文献求助10
11秒前
14秒前
量子星尘发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5786859
求助须知:如何正确求助?哪些是违规求助? 5696278
关于积分的说明 15470826
捐赠科研通 4915556
什么是DOI,文献DOI怎么找? 2645833
邀请新用户注册赠送积分活动 1593523
关于科研通互助平台的介绍 1547863