Diagnosis of Alzheimer’s disease by joining dual attention CNN and MLP based on structural MRIs, clinical and genetic data

可解释性 计算机科学 卷积神经网络 人工智能 神经影像学 多层感知器 模式识别(心理学) 人工神经网络 机器学习 医学 精神科
作者
Yan-Rui Qiang,Shao‐Wu Zhang,Jiani Li,Yan Li,Qin-Yi Zhou
出处
期刊:Artificial Intelligence in Medicine [Elsevier]
卷期号:145: 102678-102678 被引量:18
标识
DOI:10.1016/j.artmed.2023.102678
摘要

Alzheimer’s disease (AD) is an irreversible central nervous degenerative disease, while mild cognitive impairment (MCI) is a precursor state of AD. Accurate early diagnosis of AD is conducive to the prevention and early intervention treatment of AD. Although some computational methods have been developed for AD diagnosis, most employ only neuroimaging, ignoring other data (e.g., genetic, clinical) that may have potential disease information. In addition, the results of some methods lack interpretability. In this work, we proposed a novel method (called DANMLP) of joining dual attention convolutional neural network (CNN) and multilayer perceptron (MLP) for computer-aided AD diagnosis by integrating multi-modality data of the structural magnetic resonance imaging (sMRI), clinical data (i.e., demographics, neuropsychology), and APOE genetic data. Our DANMLP consists of four primary components: (1) the Patch-CNN for extracting the image characteristics from each local patch, (2) the position self-attention block for capturing the dependencies between features within a patch, (3) the channel self-attention block for capturing dependencies of inter-patch features, (4) two MLP networks for extracting the clinical features and outputting the AD classification results, respectively. Compared with other state-of-the-art methods in the 5CV test, DANMLP achieves 93% and 82.4% classification accuracy for the AD vs. MCI and MCI vs. NC tasks on the ADNI database, which is 0.2%∼15.2% and 3.4%∼26.8% higher than that of other five methods, respectively. The individualized visualization of focal areas can also help clinicians in the early diagnosis of AD. These results indicate that DANMLP can be effectively used for diagnosing AD and MCI patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助yfn采纳,获得10
刚刚
包容浩宇发布了新的文献求助10
刚刚
like1994发布了新的文献求助10
刚刚
NexusExplorer应助郑小凝采纳,获得10
1秒前
1秒前
冷酷太清完成签到,获得积分10
2秒前
华仔发布了新的文献求助10
3秒前
3秒前
传奇3应助Paradox采纳,获得10
4秒前
脑洞疼应助Paradox采纳,获得10
4秒前
4秒前
Owen应助Paradox采纳,获得10
4秒前
汉堡包应助Paradox采纳,获得10
4秒前
JamesPei应助Paradox采纳,获得10
4秒前
慕青应助Paradox采纳,获得10
4秒前
Jasper应助Paradox采纳,获得10
4秒前
深情安青应助Paradox采纳,获得10
4秒前
上官若男应助Paradox采纳,获得10
4秒前
科研通AI6应助自信孤风采纳,获得10
5秒前
尤里有气发布了新的文献求助10
6秒前
张杰发布了新的文献求助10
6秒前
6秒前
光亮静槐发布了新的文献求助10
6秒前
今后应助distinct采纳,获得10
8秒前
WT关闭了WT文献求助
8秒前
NexusExplorer应助李钧鹏采纳,获得10
9秒前
李健应助义气的采文采纳,获得10
10秒前
张兰兰发布了新的文献求助10
11秒前
yfn发布了新的文献求助10
12秒前
13秒前
14秒前
科研通AI6应助甜美的成败采纳,获得10
15秒前
万能图书馆应助zzznznnn采纳,获得10
15秒前
16秒前
量子星尘发布了新的文献求助10
17秒前
聂紫寒完成签到,获得积分10
18秒前
18秒前
达落完成签到,获得积分10
18秒前
19秒前
薇子发布了新的文献求助10
19秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5583326
求助须知:如何正确求助?哪些是违规求助? 4667155
关于积分的说明 14765758
捐赠科研通 4609337
什么是DOI,文献DOI怎么找? 2529123
邀请新用户注册赠送积分活动 1498393
关于科研通互助平台的介绍 1467043