Diagnosis of Alzheimer’s disease by joining dual attention CNN and MLP based on structural MRIs, clinical and genetic data

可解释性 计算机科学 卷积神经网络 人工智能 神经影像学 多层感知器 模式识别(心理学) 人工神经网络 机器学习 医学 精神科
作者
Yan-Rui Qiang,Shao‐Wu Zhang,Jiani Li,Yan Li,Qin-Yi Zhou
出处
期刊:Artificial Intelligence in Medicine [Elsevier]
卷期号:145: 102678-102678 被引量:18
标识
DOI:10.1016/j.artmed.2023.102678
摘要

Alzheimer’s disease (AD) is an irreversible central nervous degenerative disease, while mild cognitive impairment (MCI) is a precursor state of AD. Accurate early diagnosis of AD is conducive to the prevention and early intervention treatment of AD. Although some computational methods have been developed for AD diagnosis, most employ only neuroimaging, ignoring other data (e.g., genetic, clinical) that may have potential disease information. In addition, the results of some methods lack interpretability. In this work, we proposed a novel method (called DANMLP) of joining dual attention convolutional neural network (CNN) and multilayer perceptron (MLP) for computer-aided AD diagnosis by integrating multi-modality data of the structural magnetic resonance imaging (sMRI), clinical data (i.e., demographics, neuropsychology), and APOE genetic data. Our DANMLP consists of four primary components: (1) the Patch-CNN for extracting the image characteristics from each local patch, (2) the position self-attention block for capturing the dependencies between features within a patch, (3) the channel self-attention block for capturing dependencies of inter-patch features, (4) two MLP networks for extracting the clinical features and outputting the AD classification results, respectively. Compared with other state-of-the-art methods in the 5CV test, DANMLP achieves 93% and 82.4% classification accuracy for the AD vs. MCI and MCI vs. NC tasks on the ADNI database, which is 0.2%∼15.2% and 3.4%∼26.8% higher than that of other five methods, respectively. The individualized visualization of focal areas can also help clinicians in the early diagnosis of AD. These results indicate that DANMLP can be effectively used for diagnosing AD and MCI patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
baiyufengsheng完成签到,获得积分10
刚刚
少年发布了新的文献求助10
1秒前
sik完成签到,获得积分10
1秒前
1秒前
2秒前
江鑫楷完成签到,获得积分10
2秒前
彭于晏应助淡然羊采纳,获得10
2秒前
李某某完成签到,获得积分10
3秒前
小白发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
3秒前
111完成签到,获得积分10
3秒前
卷卷关注了科研通微信公众号
4秒前
zzzzzzp发布了新的文献求助10
4秒前
大Lee发布了新的文献求助10
4秒前
科研通AI6应助哇咔咔采纳,获得10
5秒前
5秒前
乃惜完成签到,获得积分10
5秒前
5秒前
煎饼完成签到,获得积分10
6秒前
xu完成签到,获得积分20
6秒前
顺顺顺应助LMXS采纳,获得10
6秒前
科研通AI6应助LMXS采纳,获得10
6秒前
6秒前
CYQ完成签到,获得积分10
8秒前
JamesPei应助小丸子采纳,获得10
8秒前
丘比特应助Ffgg采纳,获得10
8秒前
李健的粉丝团团长应助Pull采纳,获得10
8秒前
9秒前
我是老大应助叶落不凉采纳,获得10
9秒前
10秒前
10秒前
科研通AI6应助fcxzvb采纳,获得10
10秒前
深情安青应助Sesenta1采纳,获得10
10秒前
10秒前
Hello应助任某人采纳,获得10
10秒前
Wy21完成签到 ,获得积分10
11秒前
李健应助清辉月凝采纳,获得10
13秒前
14秒前
14秒前
CodeCraft应助白衣修身采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5636950
求助须知:如何正确求助?哪些是违规求助? 4742342
关于积分的说明 14997109
捐赠科研通 4795139
什么是DOI,文献DOI怎么找? 2561855
邀请新用户注册赠送积分活动 1521357
关于科研通互助平台的介绍 1481458