Diagnosis of Alzheimer’s disease by joining dual attention CNN and MLP based on structural MRIs, clinical and genetic data

可解释性 计算机科学 卷积神经网络 人工智能 神经影像学 多层感知器 模式识别(心理学) 人工神经网络 机器学习 医学 精神科
作者
Yan-Rui Qiang,Shao‐Wu Zhang,Jiani Li,Yan Li,Qin-Yi Zhou
出处
期刊:Artificial Intelligence in Medicine [Elsevier]
卷期号:145: 102678-102678 被引量:18
标识
DOI:10.1016/j.artmed.2023.102678
摘要

Alzheimer’s disease (AD) is an irreversible central nervous degenerative disease, while mild cognitive impairment (MCI) is a precursor state of AD. Accurate early diagnosis of AD is conducive to the prevention and early intervention treatment of AD. Although some computational methods have been developed for AD diagnosis, most employ only neuroimaging, ignoring other data (e.g., genetic, clinical) that may have potential disease information. In addition, the results of some methods lack interpretability. In this work, we proposed a novel method (called DANMLP) of joining dual attention convolutional neural network (CNN) and multilayer perceptron (MLP) for computer-aided AD diagnosis by integrating multi-modality data of the structural magnetic resonance imaging (sMRI), clinical data (i.e., demographics, neuropsychology), and APOE genetic data. Our DANMLP consists of four primary components: (1) the Patch-CNN for extracting the image characteristics from each local patch, (2) the position self-attention block for capturing the dependencies between features within a patch, (3) the channel self-attention block for capturing dependencies of inter-patch features, (4) two MLP networks for extracting the clinical features and outputting the AD classification results, respectively. Compared with other state-of-the-art methods in the 5CV test, DANMLP achieves 93% and 82.4% classification accuracy for the AD vs. MCI and MCI vs. NC tasks on the ADNI database, which is 0.2%∼15.2% and 3.4%∼26.8% higher than that of other five methods, respectively. The individualized visualization of focal areas can also help clinicians in the early diagnosis of AD. These results indicate that DANMLP can be effectively used for diagnosing AD and MCI patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
所所应助阿笠采纳,获得80
刚刚
1秒前
琪琪完成签到,获得积分10
3秒前
4秒前
4秒前
逸仙完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
mangata发布了新的文献求助10
5秒前
C14H10发布了新的文献求助10
5秒前
bkagyin应助yi417采纳,获得10
5秒前
金禧发布了新的文献求助10
6秒前
6秒前
脑洞疼应助小福星饼干采纳,获得10
6秒前
7秒前
李健应助自信的寻菡采纳,获得10
8秒前
月流瓦发布了新的文献求助10
9秒前
9秒前
欣喜雁荷完成签到,获得积分10
10秒前
怕黑汽车完成签到 ,获得积分10
10秒前
笨笨的映菡完成签到,获得积分10
11秒前
11秒前
godsence发布了新的文献求助30
11秒前
小小发布了新的文献求助30
12秒前
酷波er应助hzh采纳,获得10
12秒前
娃哈哈发布了新的文献求助10
12秒前
满天星完成签到,获得积分20
13秒前
13秒前
迷路的成风完成签到,获得积分10
13秒前
美丽的芙完成签到 ,获得积分10
13秒前
筑梦之鱼完成签到,获得积分10
14秒前
15秒前
阳光的冷珍完成签到,获得积分10
15秒前
希望天下0贩的0应助Lucas采纳,获得10
16秒前
量子星尘发布了新的文献求助10
17秒前
17秒前
18秒前
选民很头疼完成签到,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5602321
求助须知:如何正确求助?哪些是违规求助? 4687452
关于积分的说明 14849525
捐赠科研通 4683682
什么是DOI,文献DOI怎么找? 2539839
邀请新用户注册赠送积分活动 1506555
关于科研通互助平台的介绍 1471414