已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Diagnosis of Alzheimer’s disease by joining dual attention CNN and MLP based on structural MRIs, clinical and genetic data

可解释性 计算机科学 卷积神经网络 人工智能 神经影像学 多层感知器 模式识别(心理学) 人工神经网络 机器学习 医学 精神科
作者
Yan-Rui Qiang,Shao‐Wu Zhang,Jiani Li,Yan Li,Qin-Yi Zhou
出处
期刊:Artificial Intelligence in Medicine [Elsevier]
卷期号:145: 102678-102678 被引量:7
标识
DOI:10.1016/j.artmed.2023.102678
摘要

Alzheimer’s disease (AD) is an irreversible central nervous degenerative disease, while mild cognitive impairment (MCI) is a precursor state of AD. Accurate early diagnosis of AD is conducive to the prevention and early intervention treatment of AD. Although some computational methods have been developed for AD diagnosis, most employ only neuroimaging, ignoring other data (e.g., genetic, clinical) that may have potential disease information. In addition, the results of some methods lack interpretability. In this work, we proposed a novel method (called DANMLP) of joining dual attention convolutional neural network (CNN) and multilayer perceptron (MLP) for computer-aided AD diagnosis by integrating multi-modality data of the structural magnetic resonance imaging (sMRI), clinical data (i.e., demographics, neuropsychology), and APOE genetic data. Our DANMLP consists of four primary components: (1) the Patch-CNN for extracting the image characteristics from each local patch, (2) the position self-attention block for capturing the dependencies between features within a patch, (3) the channel self-attention block for capturing dependencies of inter-patch features, (4) two MLP networks for extracting the clinical features and outputting the AD classification results, respectively. Compared with other state-of-the-art methods in the 5CV test, DANMLP achieves 93% and 82.4% classification accuracy for the AD vs. MCI and MCI vs. NC tasks on the ADNI database, which is 0.2%∼15.2% and 3.4%∼26.8% higher than that of other five methods, respectively. The individualized visualization of focal areas can also help clinicians in the early diagnosis of AD. These results indicate that DANMLP can be effectively used for diagnosing AD and MCI patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雾暮灬完成签到,获得积分10
1秒前
3秒前
小二郎应助123采纳,获得10
3秒前
研友_VZG7GZ应助Fancy采纳,获得10
4秒前
7秒前
沐沐心完成签到 ,获得积分10
7秒前
苏夏发布了新的文献求助10
10秒前
10秒前
zzz完成签到 ,获得积分10
13秒前
14秒前
effortless发布了新的文献求助20
14秒前
123发布了新的文献求助10
19秒前
Q123ba叭完成签到 ,获得积分10
19秒前
飞逝的快乐时光完成签到 ,获得积分10
20秒前
23秒前
爱静静应助hayk采纳,获得10
24秒前
27秒前
Duck完成签到,获得积分10
28秒前
始冰十七发布了新的文献求助10
28秒前
科研通AI2S应助min17采纳,获得10
30秒前
Bismarck发布了新的文献求助10
32秒前
星辰大海应助还寻思啥呢采纳,获得20
32秒前
Sesenta1发布了新的文献求助10
33秒前
科研通AI2S应助Minerva采纳,获得10
36秒前
温暖南莲应助effortless采纳,获得20
42秒前
42秒前
hhhh完成签到,获得积分10
44秒前
迅速友容发布了新的文献求助10
46秒前
Sesenta1完成签到,获得积分10
47秒前
聪明的行云完成签到 ,获得积分10
50秒前
CodeCraft应助lf-leo采纳,获得10
50秒前
静静想静静地静静完成签到 ,获得积分10
53秒前
文艺安青完成签到,获得积分10
58秒前
1分钟前
汉字应助迅速友容采纳,获得30
1分钟前
上官若男应助农大彭于晏采纳,获得10
1分钟前
啊啊啊啊啊完成签到 ,获得积分10
1分钟前
成就醉柳完成签到,获得积分10
1分钟前
1分钟前
1分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150395
求助须知:如何正确求助?哪些是违规求助? 2801512
关于积分的说明 7845255
捐赠科研通 2459095
什么是DOI,文献DOI怎么找? 1308964
科研通“疑难数据库(出版商)”最低求助积分说明 628618
版权声明 601727