Diagnosis of Alzheimer’s disease by joining dual attention CNN and MLP based on structural MRIs, clinical and genetic data

可解释性 计算机科学 卷积神经网络 人工智能 神经影像学 多层感知器 模式识别(心理学) 人工神经网络 机器学习 医学 精神科
作者
Yan-Rui Qiang,Shao‐Wu Zhang,Jiani Li,Yan Li,Qin-Yi Zhou
出处
期刊:Artificial Intelligence in Medicine [Elsevier BV]
卷期号:145: 102678-102678 被引量:18
标识
DOI:10.1016/j.artmed.2023.102678
摘要

Alzheimer’s disease (AD) is an irreversible central nervous degenerative disease, while mild cognitive impairment (MCI) is a precursor state of AD. Accurate early diagnosis of AD is conducive to the prevention and early intervention treatment of AD. Although some computational methods have been developed for AD diagnosis, most employ only neuroimaging, ignoring other data (e.g., genetic, clinical) that may have potential disease information. In addition, the results of some methods lack interpretability. In this work, we proposed a novel method (called DANMLP) of joining dual attention convolutional neural network (CNN) and multilayer perceptron (MLP) for computer-aided AD diagnosis by integrating multi-modality data of the structural magnetic resonance imaging (sMRI), clinical data (i.e., demographics, neuropsychology), and APOE genetic data. Our DANMLP consists of four primary components: (1) the Patch-CNN for extracting the image characteristics from each local patch, (2) the position self-attention block for capturing the dependencies between features within a patch, (3) the channel self-attention block for capturing dependencies of inter-patch features, (4) two MLP networks for extracting the clinical features and outputting the AD classification results, respectively. Compared with other state-of-the-art methods in the 5CV test, DANMLP achieves 93% and 82.4% classification accuracy for the AD vs. MCI and MCI vs. NC tasks on the ADNI database, which is 0.2%∼15.2% and 3.4%∼26.8% higher than that of other five methods, respectively. The individualized visualization of focal areas can also help clinicians in the early diagnosis of AD. These results indicate that DANMLP can be effectively used for diagnosing AD and MCI patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zmy233完成签到,获得积分10
刚刚
znn发布了新的文献求助10
1秒前
aniu完成签到,获得积分10
1秒前
2秒前
3秒前
J的承诺完成签到 ,获得积分10
3秒前
呱呱发布了新的文献求助10
4秒前
Hello应助Alav0314采纳,获得10
5秒前
5秒前
淞33发布了新的文献求助10
5秒前
6秒前
量子星尘发布了新的文献求助20
6秒前
bkagyin应助DDvicky采纳,获得10
8秒前
秘密发布了新的文献求助10
9秒前
科研通AI5应助gf采纳,获得10
9秒前
9秒前
11秒前
CodeCraft应助ANY采纳,获得10
12秒前
cloud发布了新的文献求助10
13秒前
华仔应助失眠的耳机采纳,获得10
13秒前
大胆班完成签到,获得积分10
13秒前
13秒前
霍霍发布了新的文献求助10
14秒前
馆长应助zj采纳,获得30
14秒前
善学以致用应助zj采纳,获得10
14秒前
曾无忧发布了新的文献求助10
14秒前
wrx_KGM完成签到,获得积分10
14秒前
大模型应助purist采纳,获得10
16秒前
Dr_Sean发布了新的文献求助10
16秒前
17秒前
17秒前
Bob完成签到,获得积分10
17秒前
英俊的铭应助天宁采纳,获得10
17秒前
wrx_KGM发布了新的文献求助10
17秒前
17秒前
17秒前
李健应助碧蓝恶天采纳,获得10
18秒前
量子星尘发布了新的文献求助10
18秒前
浮游应助路在脚下采纳,获得10
20秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
解放军总医院眼科医学部病例精解 1000
温州医科大学附属眼视光医院斜弱视与双眼视病例精解 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 500
translating meaning 500
Storie e culture della televisione 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4896403
求助须知:如何正确求助?哪些是违规求助? 4178074
关于积分的说明 12969799
捐赠科研通 3941347
什么是DOI,文献DOI怎么找? 2162226
邀请新用户注册赠送积分活动 1180680
关于科研通互助平台的介绍 1086242