已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Diagnosis of Alzheimer’s disease by joining dual attention CNN and MLP based on structural MRIs, clinical and genetic data

可解释性 计算机科学 卷积神经网络 人工智能 神经影像学 多层感知器 模式识别(心理学) 人工神经网络 机器学习 医学 精神科
作者
Yan-Rui Qiang,Shao‐Wu Zhang,Jiani Li,Yan Li,Qin-Yi Zhou
出处
期刊:Artificial Intelligence in Medicine [Elsevier]
卷期号:145: 102678-102678 被引量:18
标识
DOI:10.1016/j.artmed.2023.102678
摘要

Alzheimer’s disease (AD) is an irreversible central nervous degenerative disease, while mild cognitive impairment (MCI) is a precursor state of AD. Accurate early diagnosis of AD is conducive to the prevention and early intervention treatment of AD. Although some computational methods have been developed for AD diagnosis, most employ only neuroimaging, ignoring other data (e.g., genetic, clinical) that may have potential disease information. In addition, the results of some methods lack interpretability. In this work, we proposed a novel method (called DANMLP) of joining dual attention convolutional neural network (CNN) and multilayer perceptron (MLP) for computer-aided AD diagnosis by integrating multi-modality data of the structural magnetic resonance imaging (sMRI), clinical data (i.e., demographics, neuropsychology), and APOE genetic data. Our DANMLP consists of four primary components: (1) the Patch-CNN for extracting the image characteristics from each local patch, (2) the position self-attention block for capturing the dependencies between features within a patch, (3) the channel self-attention block for capturing dependencies of inter-patch features, (4) two MLP networks for extracting the clinical features and outputting the AD classification results, respectively. Compared with other state-of-the-art methods in the 5CV test, DANMLP achieves 93% and 82.4% classification accuracy for the AD vs. MCI and MCI vs. NC tasks on the ADNI database, which is 0.2%∼15.2% and 3.4%∼26.8% higher than that of other five methods, respectively. The individualized visualization of focal areas can also help clinicians in the early diagnosis of AD. These results indicate that DANMLP can be effectively used for diagnosing AD and MCI patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bju完成签到,获得积分10
2秒前
兴奋雁蓉完成签到,获得积分10
2秒前
LL爱读书发布了新的文献求助10
3秒前
lili发布了新的文献求助10
4秒前
王景晨发布了新的文献求助10
4秒前
Hello应助觅柔采纳,获得10
4秒前
kk完成签到,获得积分10
6秒前
洽洽瓜子shine完成签到,获得积分10
6秒前
xyuf9002完成签到,获得积分10
7秒前
鸣风完成签到,获得积分10
7秒前
陶醉的妙竹应助kaka采纳,获得10
8秒前
李晓晓完成签到 ,获得积分10
10秒前
lili完成签到,获得积分10
11秒前
迷路的芒果关注了科研通微信公众号
11秒前
科研通AI6应助77采纳,获得10
12秒前
QMCL完成签到,获得积分0
12秒前
Yimei发布了新的文献求助10
12秒前
皮皮蝦发布了新的文献求助10
12秒前
小马甲应助FaFa采纳,获得10
13秒前
爆米花应助王景晨采纳,获得10
15秒前
15秒前
16秒前
开朗的千雁完成签到 ,获得积分10
16秒前
18秒前
19秒前
11完成签到,获得积分20
19秒前
20秒前
Zhang完成签到 ,获得积分10
20秒前
21秒前
ii关闭了ii文献求助
23秒前
23秒前
11发布了新的文献求助10
24秒前
玉米发布了新的文献求助10
24秒前
25秒前
25秒前
25秒前
26秒前
神探完成签到 ,获得积分10
28秒前
香蕉发夹完成签到,获得积分10
29秒前
原初发布了新的文献求助10
30秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
Machine Learning for Polymer Informatics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5384903
求助须知:如何正确求助?哪些是违规求助? 4507675
关于积分的说明 14028732
捐赠科研通 4417398
什么是DOI,文献DOI怎么找? 2426458
邀请新用户注册赠送积分活动 1419209
关于科研通互助平台的介绍 1397553