已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Diagnosis of Alzheimer’s disease by joining dual attention CNN and MLP based on structural MRIs, clinical and genetic data

可解释性 计算机科学 卷积神经网络 人工智能 神经影像学 多层感知器 模式识别(心理学) 人工神经网络 机器学习 医学 精神科
作者
Yan-Rui Qiang,Shao‐Wu Zhang,Jiani Li,Yan Li,Qin-Yi Zhou
出处
期刊:Artificial Intelligence in Medicine [Elsevier]
卷期号:145: 102678-102678 被引量:18
标识
DOI:10.1016/j.artmed.2023.102678
摘要

Alzheimer’s disease (AD) is an irreversible central nervous degenerative disease, while mild cognitive impairment (MCI) is a precursor state of AD. Accurate early diagnosis of AD is conducive to the prevention and early intervention treatment of AD. Although some computational methods have been developed for AD diagnosis, most employ only neuroimaging, ignoring other data (e.g., genetic, clinical) that may have potential disease information. In addition, the results of some methods lack interpretability. In this work, we proposed a novel method (called DANMLP) of joining dual attention convolutional neural network (CNN) and multilayer perceptron (MLP) for computer-aided AD diagnosis by integrating multi-modality data of the structural magnetic resonance imaging (sMRI), clinical data (i.e., demographics, neuropsychology), and APOE genetic data. Our DANMLP consists of four primary components: (1) the Patch-CNN for extracting the image characteristics from each local patch, (2) the position self-attention block for capturing the dependencies between features within a patch, (3) the channel self-attention block for capturing dependencies of inter-patch features, (4) two MLP networks for extracting the clinical features and outputting the AD classification results, respectively. Compared with other state-of-the-art methods in the 5CV test, DANMLP achieves 93% and 82.4% classification accuracy for the AD vs. MCI and MCI vs. NC tasks on the ADNI database, which is 0.2%∼15.2% and 3.4%∼26.8% higher than that of other five methods, respectively. The individualized visualization of focal areas can also help clinicians in the early diagnosis of AD. These results indicate that DANMLP can be effectively used for diagnosing AD and MCI patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助Uncanny采纳,获得10
1秒前
zwh关注了科研通微信公众号
1秒前
Norcae完成签到 ,获得积分10
1秒前
wenyiboy完成签到,获得积分10
2秒前
cciocio完成签到,获得积分20
4秒前
貔貅完成签到,获得积分10
7秒前
zzn完成签到,获得积分10
8秒前
ss完成签到,获得积分10
9秒前
15秒前
所所应助yuanyuan采纳,获得10
15秒前
阳光的樱发布了新的文献求助20
22秒前
肆_完成签到 ,获得积分10
23秒前
24秒前
24秒前
25秒前
zzz完成签到,获得积分10
26秒前
欢呼的世立完成签到 ,获得积分10
28秒前
光亮翠风发布了新的文献求助10
28秒前
墨染完成签到 ,获得积分10
30秒前
cciocio发布了新的文献求助10
31秒前
体贴代容发布了新的文献求助30
31秒前
仄言发布了新的文献求助30
31秒前
光亮翠风完成签到,获得积分10
32秒前
miracle完成签到,获得积分10
33秒前
djnjv完成签到,获得积分10
34秒前
35秒前
shunlimaomi完成签到 ,获得积分10
36秒前
40秒前
Hello应助yuxixi采纳,获得10
40秒前
djnjv发布了新的文献求助10
41秒前
单身的绮菱完成签到,获得积分20
42秒前
李爱国应助韩擎宇采纳,获得20
47秒前
刘kk完成签到 ,获得积分10
47秒前
梦里的大子刊完成签到 ,获得积分10
47秒前
51秒前
勤恳的小懒猪关注了科研通微信公众号
53秒前
独特的师完成签到,获得积分10
54秒前
56秒前
17发布了新的文献求助10
57秒前
58秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599579
求助须知:如何正确求助?哪些是违规求助? 4685304
关于积分的说明 14838289
捐赠科研通 4669300
什么是DOI,文献DOI怎么找? 2538085
邀请新用户注册赠送积分活动 1505488
关于科研通互助平台的介绍 1470859