Diagnosis of Alzheimer’s disease by joining dual attention CNN and MLP based on structural MRIs, clinical and genetic data

可解释性 计算机科学 卷积神经网络 人工智能 神经影像学 多层感知器 模式识别(心理学) 人工神经网络 机器学习 医学 精神科
作者
Yan-Rui Qiang,Shao‐Wu Zhang,Jiani Li,Yan Li,Qin-Yi Zhou
出处
期刊:Artificial Intelligence in Medicine [Elsevier BV]
卷期号:145: 102678-102678 被引量:12
标识
DOI:10.1016/j.artmed.2023.102678
摘要

Alzheimer’s disease (AD) is an irreversible central nervous degenerative disease, while mild cognitive impairment (MCI) is a precursor state of AD. Accurate early diagnosis of AD is conducive to the prevention and early intervention treatment of AD. Although some computational methods have been developed for AD diagnosis, most employ only neuroimaging, ignoring other data (e.g., genetic, clinical) that may have potential disease information. In addition, the results of some methods lack interpretability. In this work, we proposed a novel method (called DANMLP) of joining dual attention convolutional neural network (CNN) and multilayer perceptron (MLP) for computer-aided AD diagnosis by integrating multi-modality data of the structural magnetic resonance imaging (sMRI), clinical data (i.e., demographics, neuropsychology), and APOE genetic data. Our DANMLP consists of four primary components: (1) the Patch-CNN for extracting the image characteristics from each local patch, (2) the position self-attention block for capturing the dependencies between features within a patch, (3) the channel self-attention block for capturing dependencies of inter-patch features, (4) two MLP networks for extracting the clinical features and outputting the AD classification results, respectively. Compared with other state-of-the-art methods in the 5CV test, DANMLP achieves 93% and 82.4% classification accuracy for the AD vs. MCI and MCI vs. NC tasks on the ADNI database, which is 0.2%∼15.2% and 3.4%∼26.8% higher than that of other five methods, respectively. The individualized visualization of focal areas can also help clinicians in the early diagnosis of AD. These results indicate that DANMLP can be effectively used for diagnosing AD and MCI patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liudw完成签到,获得积分10
刚刚
丹丹子完成签到 ,获得积分10
1秒前
时光完成签到,获得积分10
1秒前
2秒前
充电宝应助vsvsgo采纳,获得10
4秒前
123完成签到 ,获得积分10
6秒前
Ammr完成签到 ,获得积分10
6秒前
无限的依波完成签到,获得积分10
6秒前
姽婳wy发布了新的文献求助10
7秒前
lemon完成签到,获得积分10
7秒前
传奇3应助duckspy采纳,获得30
8秒前
陈木木完成签到,获得积分10
9秒前
可可西里完成签到,获得积分10
10秒前
奋斗蜗牛完成签到,获得积分10
10秒前
CipherSage应助眼睛大的擎苍采纳,获得10
10秒前
打打应助小小酥采纳,获得10
11秒前
fox完成签到 ,获得积分10
11秒前
僦是卜够完成签到 ,获得积分10
12秒前
小马甲应助嘉梦采纳,获得10
15秒前
qiqi完成签到,获得积分10
16秒前
16秒前
科研乞丐应助Jerry采纳,获得20
17秒前
vsvsgo发布了新的文献求助10
19秒前
Jeffrey完成签到,获得积分10
20秒前
明理采珊完成签到,获得积分10
20秒前
lll发布了新的文献求助10
20秒前
vsvsgo发布了新的文献求助10
23秒前
慎之完成签到 ,获得积分10
23秒前
我是微风完成签到,获得积分10
23秒前
传奇3应助木子采纳,获得30
25秒前
vsvsgo发布了新的文献求助10
27秒前
feitian201861完成签到,获得积分10
27秒前
29秒前
mmr完成签到 ,获得积分10
30秒前
大知闲闲完成签到,获得积分10
31秒前
陌陌完成签到,获得积分10
31秒前
vsvsgo发布了新的文献求助10
31秒前
科研通AI2S应助sunyanghu369采纳,获得30
33秒前
wlp鹏完成签到,获得积分10
35秒前
vsvsgo发布了新的文献求助10
35秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038235
求助须知:如何正确求助?哪些是违规求助? 3575992
关于积分的说明 11374009
捐赠科研通 3305760
什么是DOI,文献DOI怎么找? 1819276
邀请新用户注册赠送积分活动 892662
科研通“疑难数据库(出版商)”最低求助积分说明 815022